Patents by Inventor Peter Ingo Borel

Peter Ingo Borel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8515231
    Abstract: Described is a method of fabricating an optical fiber preform that includes a deep index trench comprising a shallower outer trench portion formed on a substrate tube and a deeper inner trench portion formed on the shallower outer trench portion. Each of the shallower outer trench and deeper inner trench portions comprises multiple silica layers. The method comprises the steps of: (1) forming each layer of the shallower outer trench portion in a single-pass deposition of a F-containing silica layer; and (2) forming each layer of the deeper inner portion in a double-pass deposition in which, in a first pass, a layer of silica soot is deposited and then, in a second pass, the soot is sintered in the presence of SiF4.
    Type: Grant
    Filed: September 6, 2012
    Date of Patent: August 20, 2013
    Assignee: OFS Fitel, LLC
    Inventors: Peter Ingo Borel, David John DiGiovanni, John Michael Fini, Poul Kristensen
  • Publication number: 20130091899
    Abstract: An optical fiber that is relatively insensitive to bend loss and alleviates the problem of catastrophic bend loss configured to support and guide the propagation of light in a fundamental transverse mode. The cladding region includes an outer cladding region, a pedestal region, an inner trench region, and an outer trench region. The pedestal region and the outer cladding region each have a refractive index relatively close to that of the outer cladding region. To suppress HOMs the pedestal region is configured to resonantly couple at least one (unwanted) transverse mode of the core region (other than the fundamental mode) to at least one transverse mode of the pedestal region. Also described are multi-tube fabrication techniques for making such fibers as well as single-pass/double-pass fabrication techniques for making the trench regions of such fibers.
    Type: Application
    Filed: September 6, 2012
    Publication date: April 18, 2013
    Applicant: OFS FITEL, LLC
    Inventors: Peter Ingo Borel, David John DiGiovanni, John Michael Fini, Poul Kristensen
  • Patent number: 8320726
    Abstract: Described are multi-tube fabrication techniques for making an optical fiber that is relatively insensitive to bend loss and alleviates the problem of catastrophic bend loss comprises a core region and a cladding region configured to support and guide the propagation of light in a fundamental transverse mode. The cladding region includes (i) an outer cladding region, (ii) an annular pedestal (or ring) region, (iii) an annular inner trench region, and (iv) an annular outer trench region. The pedestal region and the outer cladding region each have a refractive index relatively close to that of the outer cladding region. In order to suppress HOMs the pedestal region is configured to resonantly couple at least one (unwanted) transverse mode of the core region (other than the fundamental mode) to at least one transverse mode of the pedestal region.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: November 27, 2012
    Assignee: OFS Fitel, LLC
    Inventors: Peter Ingo Borel, David John DiGiovanni, John Michael Fini, Poul Kristensen
  • Publication number: 20120159995
    Abstract: An optical fiber that is relatively insensitive to bend loss and alleviates the problem of catastrophic bend loss comprises a core region and a cladding region configured to support and guide the propagation of light in a fundamental transverse mode. The cladding region includes (i) an outer cladding region, (ii) an annular pedestal (or ring) region, (iii) an annular inner trench region, and (iv) an annular outer trench region. The pedestal region and the outer cladding region each have a refractive index relatively close to that of the outer cladding region. In order to suppress HOMs the pedestal region is configured to resonantly couple at least one (unwanted) transverse mode of the core region (other than the fundamental mode) to at least one transverse mode of the pedestal region. In a preferred embodiment, the fiber is configured so that, at a signal wavelength of approximately 1550 nm, its bend loss is no more than about 0.1 dB/turn at bend radius of 5 mm and is no more than about 0.
    Type: Application
    Filed: December 15, 2011
    Publication date: June 28, 2012
    Inventors: Peter Ingo Borel, David John DiGiovanni, John Michael Fini, Poul Kristensen
  • Patent number: 8107784
    Abstract: An optical fiber that is relatively insensitive to bend loss and alleviates the problem of catastrophic bend loss comprises a core region and a cladding region configured to support and guide the propagation of light in a fundamental transverse mode. The cladding region includes (i) an outer cladding region, (ii) an annular pedestal (or ring) region, (iii) an annular inner trench region, and (iv) an annular outer trench region. The pedestal region and the outer cladding region each have a refractive index relatively close to that of the outer cladding region. In order to suppress HOMs the pedestal region is configured to resonantly couple at least one (unwanted) transverse mode of the core region (other than the fundamental mode) to at least one transverse mode of the pedestal region. In a preferred embodiment, the fiber is configured so that, at a signal wavelength of approximately 1550 nm, its bend loss is no more than about 0.1 dB/turn at bend radius of 5 mm and is no more than about 0.
    Type: Grant
    Filed: May 27, 2009
    Date of Patent: January 31, 2012
    Assignee: OFS Fitel, LLC
    Inventors: Peter Ingo Borel, David John DiGiovanni, John Michael Fini, Poul Kristensen
  • Publication number: 20090290841
    Abstract: An optical fiber that is relatively insensitive to bend loss and alleviates the problem of catastrophic bend loss comprises a core region and a cladding region configured to support and guide the propagation of light in a fundamental transverse mode. The cladding region includes (i) an outer cladding region, (ii) an annular pedestal (or ring) region, (iii) an annular inner trench region, and (iv) an annular outer trench region. The pedestal region and the outer cladding region each have a refractive index relatively close to that of the outer cladding region. In order to suppress HOMs the pedestal region is configured to resonantly couple at least one (unwanted) transverse mode of the core region (other than the fundamental mode) to at least one transverse mode of the pedestal region. In a preferred embodiment, the fiber is configured so that, at a signal wavelength of approximately 1550 nm, its bend loss is no more than about 0.1 dB/turn at bend radius of 5 mm and is no more than about 0.
    Type: Application
    Filed: May 27, 2009
    Publication date: November 26, 2009
    Applicant: OFS Fitel, LLC
    Inventors: Peter Ingo Borel, David John DiGiovanni, John Michael Fini, Poul Kristensen