Patents by Inventor Peter J. Stamatis

Peter J. Stamatis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7506566
    Abstract: A bulk amorphous metal magnetic component has a plurality of laminations of ferromagnetic amorphous metal strips adhered together to form a generally three-dimensional part having the shape of a polyhedron. The component is formed by stamping, stacking and bonding. The bulk amorphous metal magnetic component may include an arcuate surface, and an implementation may include two arcuate surfaces that are disposed opposite each other. The magnetic component may be operable at frequencies ranging from between approximately 50 Hz and 20,000 Hz. When the component is excited at an excitation frequency “f” to a peak induction level Bmax, it may exhibit a core-loss less than “L” wherein L is given by the formula L=0.0074 f (Bmax)1.3+0.000282 f1.5 (Bmax)2.4, said core loss, said excitation frequency and said peak induction level being measured in watts per kilogram, hertz, and teslas, respectively.
    Type: Grant
    Filed: December 22, 2005
    Date of Patent: March 24, 2009
    Assignee: Metglas, Inc.
    Inventors: Nicholas J. Decristofaro, Gordon E. Fish, Scott M. Lindquist, Peter J. Stamatis
  • Patent number: 7011718
    Abstract: A bulk amorphous metal magnetic component has a plurality of laminations of ferromagnetic amorphous metal strips adhered together to form a generally three-dimensional part having the shape of a polyhedron. The component is formed by stamping, stacking and bonding. The bulk amorphous metal magnetic component may include an arcuate surface, and an implementation may include two arcuate surfaces that are disposed opposite each other. The magnetic component may be operable at frequencies ranging from between approximately 50 Hz and 20,000 Hz. When the component is excited at an excitation frequency “f” to a peak induction level Bmax, it may exhibit a core-loss less than “L” wherein L is given by the formula L=0.0074 f (Bmax)1.3+0.000282 f1.5 (Bmax)2.4, said core loss, said excitation frequency and said peak induction level being measured in watts per kilogram, hertz, and teslas, respectively.
    Type: Grant
    Filed: October 24, 2002
    Date of Patent: March 14, 2006
    Assignee: Metglas, Inc.
    Inventors: Nicholas J. Decristofaro, Gordon E. Fish, Scott M. Lindquist, Peter J. Stamatis
  • Patent number: 6960860
    Abstract: An amorphous metal stator for a high efficiency radial-flux electric motor has a plurality of segments, each of which includes a plurality of layers of amorphous metal strips. The plural segments are arranged to form a generally cylindrical stator having a plurality of teeth sections or poles protruding radially inward from the inner surface of the stator. In a first embodiment, the stator back-iron and teeth are constructed such that radial flux passing through the stator crosses just one air gap when traversing each segment of the stator. In a second embodiment, the stator back-iron and teeth are constructed such that radial flux passing through the stator traverses each segment without crossing an air gap.
    Type: Grant
    Filed: February 17, 2000
    Date of Patent: November 1, 2005
    Assignee: Metglas, Inc.
    Inventors: Nicholas J. DeCristofaro, Dung A. Ngo, Richard L. Bye, Jr., Peter J. Stamatis, Gordon E. Fish
  • Patent number: 6737784
    Abstract: A bulk amorphous metal magnetic component for an electric machine such as a motor or generator is described. The component may include a plurality of substantially similarly shaped laminations stamped from ferromagnetic amorphous metal strips, stacked and bonded together in registry, wherein the laminations include a plurality of tooth-shaped sections. In an alternate implementation, the component may be constructed by first stacking a plurality of layers of amorphous metal strips, laminating the layers and then cutting the object to form the component. The bulk amorphous metal magnetic component when operated at an excitation frequency “f” to a peak induction level Bmax has a core-loss less than “L” wherein L is given by the formula L=0.0074 f(Bmax)1.3+0.000282 f1.5(Bmax)2.4, said core loss, said excitation frequency and said peak induction level being measured in watts per kilogram, hertz, and teslas, respectively.
    Type: Grant
    Filed: October 5, 2001
    Date of Patent: May 18, 2004
    Inventors: Scott M. Lindquist, Gordon E. Fish, Nicholas J. DeCristofaro, Peter J. Stamatis
  • Publication number: 20030106619
    Abstract: A bulk amorphous metal magnetic component has a plurality of laminations of ferromagnetic amorphous metal strips adhered together to form a generally three-dimensional part having the shape of a polyhedron. The component is formed by stamping, stacking and bonding. The bulk amorphous metal magnetic component may include an arcuate surface, and an implementation may include two arcuate surfaces that are disposed opposite each other. The magnetic component may be operable at frequencies ranging from between approximately 50 Hz and 20,000 Hz. When the component is excited at an excitation frequency “f” to a peak induction level Bmax, it may exhibit a core-loss less than “L” wherein L is given by the formula L=0.0074 f (Bmax)1.3+0.000282 f1.5 (Bmax)2.4, said core loss, said excitation frequency and said peak induction level being measured in watts per kilogram, hertz, and teslas, respectively.
    Type: Application
    Filed: October 24, 2002
    Publication date: June 12, 2003
    Applicant: Honeywell International Inc. (Reel 012523 , Frame 0136 ).
    Inventors: Nicholas J. Decristofaro, Gordon E. Fish, Scott M. Lindquist, Peter J. Stamatis
  • Patent number: 6552639
    Abstract: A bulk amorphous metal magnetic component has a plurality of laminations of ferromagnetic amorphous metal strips adhered together to form a generally three-dimensional part having the shape of a polyhedron. The component is formed by stamping, stacking and bonding. The bulk amorphous metal magnetic component may include an arcuate surface, and an implementation may include two arcuate surfaces that are disposed opposite each other. The magnetic component may be operable at frequencies ranging from between approximately 50 Hz and 20,000 Hz. When the component is excited at an excitation frequency “f” to a peak induction level Bmax, it may exhibit a core-loss less than “L” wherein L is given by the formula L=0.0074 f(Bmax)1.3+0.000282 f1.5(Bmax)2.4, said core loss, said excitation frequency and said peak induction level being measured in watts per kilogram, hertz, and teslas, respectively.
    Type: Grant
    Filed: April 25, 2001
    Date of Patent: April 22, 2003
    Assignee: Honeywell International Inc.
    Inventors: Nicholas J. Decristofaro, Gordon E. Fish, Scott M. Lindquist, Peter J. Stamatis
  • Publication number: 20020158540
    Abstract: A bulk amorphous metal magnetic component for an electric machine such as a motor or generator is described. The component may include a plurality of substantially similarly shaped laminations stamped from ferromagnetic amorphous metal strips, stacked and bonded together in registry, wherein the laminations include a plurality of tooth-shaped sections. In an alternate implementation, the component may be constructed by first stacking a plurality of layers of amorphous metal strips, laminating the layers and then cutting the object to form the component. The bulk amorphous metal magnetic component when operated at an excitation frequency “f” to a peak induction level Bmax has a core-loss less than “L” wherein L is given by the formula L=0.0074 f (Bmax)1.3+0.000282 f1.5 (Bmax)2.4, said core loss, said excitation frequency and said peak induction level being measured in watts per kilogram, hertz, and teslas, respectively.
    Type: Application
    Filed: October 5, 2001
    Publication date: October 31, 2002
    Inventors: Scott M. Lindquist, Gordon E. Fish, Nicholas J. DeCristofaro, Peter J. Stamatis
  • Publication number: 20010043134
    Abstract: A bulk amorphous metal magnetic component has a plurality of laminations of ferromagnetic amorphous metal strips adhered together to form a generally three-dimensional part having the shape of a polyhedron. The component is formed by stamping, stacking and bonding. The bulk amorphous metal magnetic component may include an arcuate surface, and an implementation may include two arcuate surfaces that are disposed opposite each other. The magnetic component may be operable at frequencies ranging from between approximately 50 Hz and 20,000 Hz. When the component is excited at an excitation frequency “f” to a peak induction level Bmax, it may exhibit a core-loss less than “L” wherein L is given by the formula L=0.0074 f (Bmax)1.3 +0.000282 f1.5 (Bmax)2.4, said core loss, said excitation frequency and said peak induction level being measured in watts per kilogram, hertz, and teslas, respectively.
    Type: Application
    Filed: April 25, 2001
    Publication date: November 22, 2001
    Inventors: Nicholas J. Decristofaro, Gordon E. Fish, Scott M. Lindquist, Peter J. Stamatis