Patents by Inventor Peter J. Van Opdorp

Peter J. Van Opdorp has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8815082
    Abstract: A process and apparatus for mixing streams of regenerated and carbonized catalyst involves passing a catalyst stream into and out of a chamber in a lower section of a riser. The chamber fosters mixing of the catalyst streams to reduce their temperature differential before contacting hydrocarbon feed.
    Type: Grant
    Filed: December 12, 2011
    Date of Patent: August 26, 2014
    Assignee: UOP LLC
    Inventors: Lisa M. Wolschlag, Lev Davydov, Paolo Palmas, Robert L. Mehlberg, Mohammad-Reza Mostofi-Ashtiani, Daniel R. Johnson, Chad R. Huovie, Michael S. Sandacz, Peter J. Van Opdorp, Thomas W. Lorsbach, Karthikeyan Paramanandam
  • Patent number: 8747758
    Abstract: A process and apparatus for mixing streams of regenerated and carbonized catalyst involves passing a catalyst stream into and out of a chamber in a lower section of a riser. The chamber fosters mixing of the catalyst streams to reduce their temperature differential before contacting hydrocarbon feed.
    Type: Grant
    Filed: December 12, 2011
    Date of Patent: June 10, 2014
    Assignee: UOP LLC
    Inventors: Lev Davydov, Lisa M. Wolschlag, Paolo Palmas, Robert L. Mehlberg, Mohammad-Reza Mostofi-Ashtiani, Daniel R. Johnson, Chad R. Huovie, Michael S. Sandacz, Peter J. Van Opdorp, Thomas W. Lorsbach, Karthikeyan Paramanandam
  • Patent number: 8747657
    Abstract: A process and apparatus for mixing streams of regenerated and carbonized catalyst involves passing a catalyst stream into and out of a chamber in a lower section of a riser. The chamber fosters mixing of the catalyst streams to reduce their temperature differential before contacting hydrocarbon feed.
    Type: Grant
    Filed: December 12, 2011
    Date of Patent: June 10, 2014
    Assignee: UOP LLC
    Inventors: Lev Davydov, Lisa M. Wolschlag, Paolo Palmas, Robert L. Mehlberg, Mohammad-Reza Mostofi-Ashtiani, Daniel R. Johnson, Chad R. Huovie, Michael S. Sandacz, Peter J. Van Opdorp, Thomas W. Lorsbach, Karthikeyan Paramanandam
  • Patent number: 8747759
    Abstract: A process and apparatus for mixing streams of regenerated and carbonized catalyst involves passing a catalyst stream into and out of a chamber in a lower section of a riser. The chamber fosters mixing of the catalyst streams to reduce their temperature differential before contacting hydrocarbon feed.
    Type: Grant
    Filed: December 12, 2011
    Date of Patent: June 10, 2014
    Assignee: UOP LLC
    Inventors: Lisa M. Wolschlag, Lev Davydov, Paolo Palmas, Robert L. Mehlberg, Mohammad-Reza Mostofi-Ashtiani, Daniel R. Johnson, Chad R. Huovie, Michael S. Sandacz, Peter J. Van Opdorp, Thomas W. Lorsbach, Karthikeyan Paramanandam
  • Publication number: 20130148464
    Abstract: A process and apparatus for mixing streams of regenerated and carbonized catalyst involves passing a catalyst stream into and out of a chamber in a lower section of a riser. The chamber fosters mixing of the catalyst streams to reduce their temperature differential before contacting hydrocarbon feed.
    Type: Application
    Filed: December 12, 2011
    Publication date: June 13, 2013
    Applicant: UOP LLC
    Inventors: Lev Davydov, Lisa M. Wolschlag, Paolo Palmas, Robert L. Mehlberg, Mohammad-Reza Mostofi-Ashtiani, Daniel R. Johnson, Chad R. Huovie, Michael S. Sandacz, Peter J. Van Opdorp, Thomas W. Lorsbach, Karthikeyan Paramanandam
  • Publication number: 20130148463
    Abstract: A process and apparatus for mixing streams of regenerated and carbonized catalyst involves passing a catalyst stream into and out of a chamber in a lower section of a riser. The chamber fosters mixing of the catalyst streams to reduce their temperature differential before contacting hydrocarbon feed.
    Type: Application
    Filed: December 12, 2011
    Publication date: June 13, 2013
    Applicant: UOP LLC
    Inventors: Lev Davydov, Lisa M. Wolschlag, Paolo Palmas, Robert L. Mehlberg, Mohammad-Reza Mostofi-Ashtiani, Daniel R. Johnson, Chad R. Huovie, Michael S. Sandacz, Peter J. Van Opdorp, Thomas W. Lorsbach, Karthikeyan Paramanandam
  • Publication number: 20130150233
    Abstract: A process and apparatus for mixing streams of regenerated and carbonized catalyst involves passing a catalyst stream into and out of a chamber in a lower section of a riser. The chamber fosters mixing of the catalyst streams to reduce their temperature differential before contacting hydrocarbon feed.
    Type: Application
    Filed: December 12, 2011
    Publication date: June 13, 2013
    Applicant: UOP LLC
    Inventors: Lisa M. Wolschlag, Lev Davydov, Paolo Palmas, Robert L. Mehlberg, Mohammad-Reza Mostofi-Ashtiani, Daniel R. Johnson, Chad R. Huovie, Michael S. Sandacz, Peter J. Van Opdorp, Thomas W. Lorsbach, Karthikeyan Paramanandam
  • Publication number: 20130148465
    Abstract: A process and apparatus for mixing streams of regenerated and carbonized catalyst involves passing a catalyst stream into and out of a chamber in a lower section of a riser. The chamber fosters mixing of the catalyst streams to reduce their temperature differential before contacting hydrocarbon feed.
    Type: Application
    Filed: December 12, 2011
    Publication date: June 13, 2013
    Applicant: UOP LLC
    Inventors: Lisa M. Wolschlag, Lev Davydov, Paolo Palmas, Robert L. Mehlberg, Mohammad-Reza Mostofi-Ashtiani, Daniel R. Johnson, Chad R. Huovie, Michael S. Sandacz, Peter J. Van Opdorp, Thomas W. Lorsbach, Karthikeyan Paramanandam
  • Patent number: 8007662
    Abstract: Fluid catalytic cracking (FCC) processes are described, in which hydroprocessed hydrocarbon streams or other hydrocarbon feed streams having a low coking tendency are subjected to direct heat exchange with the FCC reactor effluent, for example in the FCC main column. The processes operate with sufficient severity such that little or no net FCC main column bottoms liquid (e.g., with a 343° C. (650° F.) distillation cut point) is generated. Regeneration temperatures with the representative low coking tendency feeds are beneficially increased by using an oxygen-enriched regeneration gas stream.
    Type: Grant
    Filed: March 27, 2009
    Date of Patent: August 30, 2011
    Assignee: UOP LLC
    Inventors: David A. Lomas, Peter J. Van Opdorp
  • Publication number: 20100243527
    Abstract: Fluid catalytic cracking (FCC) processes are described, in which hydroprocessed hydrocarbon streams or other hydrocarbon feed streams having a low coking tendency are subjected to direct heat exchange with the FCC reactor effluent, for example in the FCC main column. The processes operate with sufficient severity such that little or no net FCC main column bottoms liquid (e.g., with a 343° C. (650° F.) distillation cut point) is generated. Regeneration temperatures with the representative low coking tendency feeds are beneficially increased by using an oxygen-enriched regeneration gas stream.
    Type: Application
    Filed: March 27, 2009
    Publication date: September 30, 2010
    Inventors: David A. Lomas, Peter J. Van Opdorp
  • Publication number: 20080081006
    Abstract: An FCC process and apparatus may include injecting hydrocarbon feedstock at different radial positions inside a riser. Multiple distributors may be used to position the openings for injecting feedstock at multiple radial positions. In addition, the openings may be away from riser peripheral wall and at different elevations along the riser wall or extending up from the riser bottom. The different opening positions introduce the feedstock across a larger area of the cross-section of the riser, which may improve the feedstock dispersion and mixing with catalyst. Improved mixing may increase conversion of the feedstock. Larger FCC units generally have greater riser diameters that may cause problems for feedstock dispersion and decrease the ability for the feedstock to mix with catalyst. Injecting the feedstock at multiple radial positions may improve feedstock dispersion in larger FCC units and increase mixing.
    Type: Application
    Filed: September 29, 2006
    Publication date: April 3, 2008
    Inventors: Daniel N. Myers, Paolo Palmas, Daniel R. Johnson, Peter J. Van Opdorp
  • Publication number: 20070205139
    Abstract: A fluid catalytic cracking process includes feeding hydrocarbon into a riser in the presence of a catalyst, cracking the hydrocarbon in the riser in the presence of the catalyst to form a cracked stream, and separating the catalyst from the cracked stream. When in a gasoline mode, the hydrocarbon is fed through a first distributor into the riser, and when in a light olefin mode, the hydrocarbon is fed through a second distributor into the riser. The second distributor is positioned at a higher elevation than the first distributor.
    Type: Application
    Filed: December 29, 2006
    Publication date: September 6, 2007
    Inventors: SATHIT KULPRATHIPANJA, Daniel N. Myers, Paolo Palmas, Mark W. Schnaith, Ismail B. Cetinkaya, Peter J. Van Opdorp, Charles L. Hemler
  • Patent number: 5336821
    Abstract: A process for the alkylation of aromatic hydrocarbons such as cumene and ethylbenzene is disclosed. A portion of the effluent stream from an alkylation reactor passes through an indirect heat exchanger to transfer heat to a flashed stream containing the product aromatic hydrocarbons. The heat exchanger recovers the exothermic heat of reaction from the effluent stream for use elsewhere in the process. This method of heat exchange is especially useful in alkylation processes where the temperature of the effluent stream is relatively low, such as where the alkylation reactor contains a zeolite catalyst.
    Type: Grant
    Filed: May 6, 1993
    Date of Patent: August 9, 1994
    Assignee: UOP
    Inventors: Richard R. DeGraff, Peter J. Van Opdorp, Russell C. Schulz
  • Patent number: 5177285
    Abstract: A process for the production of alkylaromatic hydrocarbons uses a high water content in an alkylation zone and a low water content in a transalkylation zone to improve yields improve process yields and catalyst life. An aromatic feed and an acyclic feed are first passed through the alkylation reaction zone that operates at a high water content. A separator receives the effluent from the alkylation reaction zone and removes water from a sidecut of unreacted aromatic feed. The sidecut of aromatic feed and a stream of polyalkylated aromatics are contacted in the transalkylation zone. The differing water content improves the operation of both the alkylation zone and the transalkylation zone.
    Type: Grant
    Filed: December 23, 1991
    Date of Patent: January 5, 1993
    Assignee: UOP
    Inventors: Peter J. Van Opdorp, Brian M. Wood