Patents by Inventor Peter L. Hagelstein

Peter L. Hagelstein has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150377952
    Abstract: A method for providing an environmental impact rating for a solar cell includes acquiring power generation data and thermal exchange data regarding the solar cell using a data acquisition device, transmitting the power generation data and the thermal exchange data to a controller, and generating the environmental impact rating based on the power generation data and the thermal exchange data using the controller, wherein the environmental impact rating provides an indication of an environmental impact of using the solar cell.
    Type: Application
    Filed: June 27, 2014
    Publication date: December 31, 2015
    Inventors: Jeffrey A. Bowers, Kenneth G. Caldeira, Peter L. Hagelstein, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Nathan P. Myhrvold, Clarence T. Tegreene, Lowell L. Wood,, JR., Victoria Y.H. Wood
  • Publication number: 20150369675
    Abstract: Various sensors and arrays of sensors that utilize nanostructures or carbon structures, such as nanotubes, nanotube meshes, or graphene sheets, are disclosed. In some arrangements, at least a pair of contacts are electrically coupled with a given nanostructure or carbon structure to sense a change.
    Type: Application
    Filed: June 19, 2014
    Publication date: December 24, 2015
    Inventors: Kenneth G. Caldeira, Peter L. Hagelstein, Roderick A. Hyde, Edward K.Y. Jung, Jordin T. Kare, Nathan P. Myhrvold, John Brian Pendry, David Schurig, Clarence T. Tegreene, Thomas Allan Weaver, Charles Whitmer, Lowell L. Wood, JR.
  • Publication number: 20150233070
    Abstract: A deicing method includes the steps of determining a necessary quantity of heat to substantially vaporize an interfacial layer between a solid surface and a layer of ice and applying pulsed heating at the interfacial layer. The pulsed heating is applied with the determined necessary quantity of heat to substantially vaporize the interfacial layer.
    Type: Application
    Filed: April 30, 2015
    Publication date: August 20, 2015
    Applicant: Elwha LLC
    Inventors: William D. Duncan, Peter L. Hagelstein, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, David B. Tuckerman, Thomas A. Weaver, Lowell L. Wood,, JR.
  • Patent number: 9052502
    Abstract: Exemplary methods, systems and components enable an enhanced direct-viewing optical device to make customized adjustments that accommodate various optical aberrations of a current user. In some instances a real-time adjustment of the transformable optical elements is based on known corrective optical parameters associated with a current user. In some implementations a control module may process currently updated wavefront measurements as a basis for determining appropriate real-time adjustment of the transformable optical elements to produce a specified change in optical wavefront at an exit pupil of the direct-viewing device. Possible transformable optical elements may have refractive and/or reflective and/or diffractive and/or transmissive characteristics that are adjusted based on current performance viewing factors for a given field of view of the direct-viewing device.
    Type: Grant
    Filed: December 29, 2011
    Date of Patent: June 9, 2015
    Assignee: ELWHA LLC
    Inventors: Kenneth G. Caldeira, Peter L. Hagelstein, Roderick A. Hyde, Edward K. Y. Jung, Jordin T. Kare, Nathan P. Myhrvold, John Brian Pendry, David Schurig, Clarence T. Tegreene, Charles Whitmer, Lowell L. Wood, Jr.
  • Patent number: 9046683
    Abstract: Exemplary methods, systems and components enable an enhanced direct-viewing optical device to make customized adjustments that accommodate various optical aberrations of a current user. In some instances a real-time adjustment of the transformable optical elements is based on known corrective optical parameters associated with a current user. In some implementations a control module may process currently updated wavefront measurements as a basis for determining appropriate real-time adjustment of the transformable optical elements to produce a specified change in optical wavefront at an exit pupil of the direct-viewing device. Possible transformable optical elements may have refractive and/or reflective and/or diffractive and/or transmissive characteristics that are adjusted based on current performance viewing factors for a given field of view of the direct-viewing device.
    Type: Grant
    Filed: December 29, 2011
    Date of Patent: June 2, 2015
    Assignee: ELWHA LLC
    Inventors: Kenneth G. Caldeira, Peter L. Hagelstein, Roderick A. Hyde, Edward K. Y. Jung, Jordin T. Kare, Nathan P. Myhrvold, John Brian Pendry, David Schurig, Clarence T. Tegreene, Charles Whitmer, Lowell L. Wood, Jr.
  • Publication number: 20150138053
    Abstract: A system may produce images including narrow-bandwidth colors. One or more sets of the narrow-bandwidth colors may be selected to be interpreted as substantially a same color by a user. The system may include a light source configured to produce the narrow-bandwidth colors, and/or narrow-passband filters may create narrow-bandwidth colors from light emitted by broad-spectrum light sources or color sources. Spatial and/or time multiplexing may be used to create separate narrow-bandwidth colors interpreted as substantially a same color by the user. For example, the light source and/or the narrow-passband filter elements may be adjustable and may alternate between emission of two or more narrow-bandwidth colors. A viewing device may include filters allowing the user to selectively filter the narrow-bandwidth colors. The user may filter the narrow-bandwidth colors to separate a stereoscopic image pair, to view a user-specific image, to view desired content obfuscated by an obfuscating image, and/or the like.
    Type: Application
    Filed: November 18, 2013
    Publication date: May 21, 2015
    Inventors: Erez Lieberman Aiden, Philip A. Eckhoff, William Gates, Peter L. Hagelstein, Roderick A. Hyde, Jordin T. Kare, Robert Langer, Eric C. Leuthardt, Nathan P. Myhrvold, Michael Schnall-Levin, Clarence T. Tegreene, Lowell L. Wood, JR.
  • Publication number: 20150138175
    Abstract: A system may produce images including narrow-bandwidth colors. One or more sets of the narrow-bandwidth colors may be selected to be interpreted as substantially a same color by a user. The system may include a light source configured to produce the narrow-bandwidth colors, and/or narrow-passband filters may create narrow-bandwidth colors from light emitted by broad-spectrum light sources or color sources. Spatial and/or time multiplexing may be used to create separate narrow-bandwidth colors interpreted as substantially a same color by the user. The light source and/or the narrow-passband filter elements may be adjustable and may alternate between emission of two or more narrow-bandwidth colors. A viewing device may include filters configured to selectively filter the narrow-bandwidth colors. The user may filter the narrow-bandwidth colors to separate a stereoscopic image pair, to view an image specific to a user, to view desired content obfuscated by an obfuscating image, and/or the like.
    Type: Application
    Filed: November 18, 2013
    Publication date: May 21, 2015
    Inventors: Erez Lieberman Aiden, Philip A. Eckhoff, William Gates, Peter L. Hagelstein, Roderick A. Hyde, Jordin T. Kare, Robert Langer, Eric C. Leuthardt, Nathan P. Myhrvold, Michael Schnall-Levin, Clarence T. Tegreene, Lowell L. Wood, JR.
  • Publication number: 20150138635
    Abstract: A system may produce images including narrow-bandwidth colors. One or more sets of the narrow-bandwidth colors may be selected to be interpreted as substantially a same color by a user. The system may include a light source configured to produce the narrow-bandwidth colors, and/or narrow-passband filters may create narrow-bandwidth colors from light emitted by broad-spectrum light sources or color sources. Spatial and/or time multiplexing may be used to create separate narrow-bandwidth colors interpreted as substantially a same color by the user. For example, the light source and/or the narrow-passband filter elements may be adjustable and may alternate between emission of two or more narrow-bandwidth colors. A viewing device may include filters allowing the user to selectively filter the narrow-bandwidth colors. The user may filter the narrow-bandwidth colors to separate a stereoscopic image pair, to view a user-specific image, to view desired content obfuscated by an obfuscating image, and/or the like.
    Type: Application
    Filed: November 18, 2013
    Publication date: May 21, 2015
    Inventors: Erez Lieberman Aiden, Philip A. Eckhoff, William Gates, Peter L. Hagelstein, Roderick A. Hyde, Jordin T. Kare, Robert Langer, Eric C. Leuthardt, Nathan P. Myhrvold, Michael Schnall-Levin, Clarence T. Tegreene, Lowell L. Wood, JR.
  • Patent number: 9035166
    Abstract: An improved method and apparatus for thermal-to-electric conversion involving relatively hot and cold juxtaposed surfaces separated by a small vacuum gap wherein the cold surface provides an array of single charge carrier converter elements along the surface and the hot surface transfers excitation energy to the opposing cold surface across the gap through Coulomb electrostatic coupling interaction.
    Type: Grant
    Filed: June 23, 2010
    Date of Patent: May 19, 2015
    Assignee: MTPV Power Corporation
    Inventors: Peter L. Hagelstein, Dennis M. Wu
  • Patent number: 9033497
    Abstract: Exemplary embodiments enable an enhanced direct-viewing optical device to include customized adjustments that accommodate various optical aberrations of a current user. Customized optical elements associated with an authorized current user are incorporated with the direct-viewing optical device to produce a specified change in optical wavefront at an exit pupil. Possible replacement optical elements may have refractive and/or reflective and/or diffractive and/or transmissive characteristics based on current performance viewing factors for a given field of view of the direct-viewing optical device. Some embodiments enable dynamic repositioning and/or transformation of replaceable corrective optical elements responsive to a detected shift of a tracked gaze direction of a current user. Replaceable interchangeable corrective optical elements may be fabricated for current usage or retained in inventory for possible future usage in designated direct-viewing optical devices.
    Type: Grant
    Filed: March 22, 2012
    Date of Patent: May 19, 2015
    Assignee: ELWHA LLC
    Inventors: Kenneth G. Caldeira, Peter L. Hagelstein, Roderick A. Hyde, Edward K. Y. Jung, Jordin T. Kare, Nathan P. Myhrvold, John Brian Pendry, David Schurig, Clarence T. Tegreene, Charles Whitmer, Lowell L. Wood, Jr.
  • Patent number: 9006694
    Abstract: Systems, devices, methods, and compositions are described for providing an x-ray shielding system including a flexible layer including a support structure having a plurality of interconnected interstitial spaces that provide a circulation network for an x-ray shielding fluid composition.
    Type: Grant
    Filed: November 3, 2011
    Date of Patent: April 14, 2015
    Assignee: Elwha LLC
    Inventors: Philip A. Eckhoff, William H. Gates, III, Peter L. Hagelstein, Roderick A. Hyde, Jordin T. Kare, Robert Langer, Erez Lieberman, Eric C. Leuthardt, Nathan P. Myhrvold, Michael Schnall-Levin, Clarence T. Tegreene, Lowell L. Wood, Jr.
  • Patent number: 9004683
    Abstract: Exemplary embodiments enable an enhanced direct-viewing optical device to make customized adjustments that accommodate optical aberrations of a current user. In some instances a real-time adjustment of the transformable optical elements is based on known corrective optical parameters associated with a current user. In some implementations a control module may process currently updated wavefront measurements as a basis for determining appropriate real-time adjustment of the transformable optical elements to produce a specified change in optical wavefront at an exit pupil of the direct-viewing device. Possible transformable optical elements include refractive and/or reflective and/or diffractive and/or transmissive characteristics that are adjusted based on current performance viewing factors for a given field of view of the direct-viewing device.
    Type: Grant
    Filed: December 29, 2011
    Date of Patent: April 14, 2015
    Assignee: Elwha LLC
    Inventors: Kenneth G. Caldeira, Peter L. Hagelstein, Roderick A. Hyde, Edward K. Y. Jung, Jordin T. Kare, Nathan P. Myhrvold, John Brian Pendry, David Schurig, Clarence T. Tegreene, Charles Whitmer, Lowell L. Wood, Jr.
  • Publication number: 20150088550
    Abstract: A vehicle may be configured to determine a characteristic of a software program operating on the vehicle. The characteristic may be provided to an insurer, and the insurer may determine a property of an insurance policy based on the characteristic. The characteristic may be, for example, a feature, a setting, and/or a version of the software program. The insurer may indicate to a vehicle operator and/or owner how changing the characteristic may affect the property of the insurance policy. The insurance policy may be formalized and agreed to by the insurer and/or the insured. The vehicle may also or instead save pre-collision status data, such adjustable parameters, internal variables, dynamic decisions, and/or identification of a software program, when a collision is detected. The pre-collision status data may be used to diagnose problems with the software program, determine fault, and/or determine future properties of insurance policies.
    Type: Application
    Filed: September 20, 2013
    Publication date: March 26, 2015
    Inventors: Jeffrey A. Bowers, Peter L. Hagelstein, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Clarence T. Tegreene, Lowell L. Wood, JR., Victoria Y.H. Wood
  • Publication number: 20150088334
    Abstract: A vehicle may be configured to determine a characteristic of a software program operating on the vehicle. The characteristic may be provided to an insurer, and the insurer may determine a property of an insurance policy based on the characteristic. The characteristic may be, for example, a feature, a setting, and/or a version of the software program. The insurer may indicate to a vehicle operator and/or owner how changing the characteristic may affect the property of the insurance policy. The insurance policy may be formalized and agreed to by the insurer and/or the insured. The vehicle may also or instead save pre-collision status data, such adjustable parameters, internal variables, dynamic decisions, and/or identification of a software program, when a collision is detected. The pre-collision status data may be used to diagnose problems with the software program, determine fault, and/or determine future properties of insurance policies.
    Type: Application
    Filed: September 20, 2013
    Publication date: March 26, 2015
    Inventors: Jeffrey A. Bowers, Peter L. Hagelstein, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Clarence T. Tegreene, Lowell L. Wood, JR., Victoria Y.H. Wood
  • Patent number: 8934166
    Abstract: Exemplary methods, systems and components enable an enhanced direct-viewing optical device to include customized adjustments that accommodate various optical aberrations of a current user. A real-time adjustment of transformable optical elements is sometimes based on predetermined corrective optical parameters associated with a current user. Customized optical elements are incorporated with the direct-viewing optical device to produce a specified change in optical wavefront at an exit pupil. Possible transformable or replacement optical elements may have refractive and/or reflective and/or diffractive and/or transmissive characteristics that are selected based on current performance viewing factors for a given field of view of the direct-viewing device. Some embodiments enable dynamic repositioning and/or transformation of corrective optical elements responsive to a detected shift of a tracked gaze direction of a current user.
    Type: Grant
    Filed: February 29, 2012
    Date of Patent: January 13, 2015
    Assignee: Elwha LLC
    Inventors: Kenneth G. Caldeira, Peter L. Hagelstein, Roderick A. Hyde, Edward K. Y. Jung, Jordin T. Kare, Nathan P. Myhrvold, John Brian Pendry, David Schurig, Clarence T. Tegreene, Charles Whitmer, Lowell L. Wood, Jr.
  • Patent number: 8871121
    Abstract: Devices and components that can interact with or modify propagation of electromagnetic waves are provided. The design, fabrication and structures of the devices exploit the properties of reactive composite materials (RCM) and reaction products thereof.
    Type: Grant
    Filed: October 23, 2008
    Date of Patent: October 28, 2014
    Inventors: Kenneth G. Caldeira, Peter L. Hagelstein, Roderick A. Hyde, Muriel Y. Ishikawa, Edward K. Y. Jung, Jordin T. Kare, Nathan P. Myhrvold, Thomas J. Nugent, Jr., John Brian Pendry, David Schurig, Clarence T. Tegreene, Charles Whitmer, Lowell L. Wood, Jr.
  • Patent number: 8854715
    Abstract: A magnetic field may be applied to a plasmon path to affect plasmon propagation.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: October 7, 2014
    Inventors: Jeffrey A. Bowers, Peter L. Hagelstein, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Clarence T. Tegreene, Lowell L. Wood, Jr., Victoria Y. H. Wood
  • Patent number: 8855907
    Abstract: A device may include a determination module for determining at least one of a status indicative of combustible fuel utilization or a status indicative of electricity utilization for propelling a hybrid vehicle; and a transmitter coupled with the determination module for transmitting the at least one of the status indicative of combustible fuel utilization or the status indicative of electricity utilization for the hybrid vehicle to an off-site entity.
    Type: Grant
    Filed: May 1, 2009
    Date of Patent: October 7, 2014
    Assignee: Searete LLC
    Inventors: Philip A. Eckhoff, William H. Gates, III, Peter L. Hagelstein, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Robert Langer, Eric C. Leuthardt, Erez Lieberman, Nathan P. Myhrvold, Michael Schnall-Levin, Clarence T. Tegreene, Lowell L. Wood, Jr.
  • Publication number: 20140263260
    Abstract: A deicing method includes the steps of determining a necessary quantity of heat to substantially vaporize an interfacial layer between a solid surface and a layer of ice and applying pulsed heating at the interfacial layer. The pulsed heating is applied with the determined necessary quantity of heat to substantially vaporize the interfacial layer.
    Type: Application
    Filed: March 13, 2013
    Publication date: September 18, 2014
    Applicant: Elwha LLC
    Inventors: William D. Duncan, Peter L. Hagelstein, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, David B. Tuckerman, Lowell L. Wood, JR., Thomas A. Weaver
  • Publication number: 20140139652
    Abstract: A 3D-display system alternates between directing light representing a left-eye view of a 3D image to a viewer's left eye and directing light representing a right-eye view of a 3D image to a viewer's right eye. To direct the light towards the viewer's eyes, the system receives eye-location data relative to a display device from an eye-tracking system and uses light deflectors, such as acousto-optic, electro-optic, and passive optical deflectors, to aim the light in a particular direction.
    Type: Application
    Filed: November 21, 2012
    Publication date: May 22, 2014
    Applicant: Elwha LLC
    Inventors: Erez L. Aiden, Alistair K. Chan, Philip A. Eckhoff, William Gates, Peter L. Hagelstein, Roderick A. Hyde, Jordin T. Kare, Robert Langer, Eric C. Leuthardt, Nathan P. Myhrvold, Michael Schnall-Levin, Lowell L. Wood, JR.