Patents by Inventor Peter L. Kellerman

Peter L. Kellerman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100038826
    Abstract: A method and apparatus for forming a sheet are disclosed. A melt is cooled and a sheet is formed on the melt. This sheet has a first thickness. The sheet is then thinned from the first thickness to a second thickness using, for example, a heater or the melt. The cooling may be configured to allow solutes to be trapped in a region of the sheet and this particular sheet may be thinned and the solutes removed. The melt may be, for example, silicon, silicon and germanium, gallium, or gallium nitride.
    Type: Application
    Filed: August 11, 2009
    Publication date: February 18, 2010
    Applicant: VARIAN SEMICONDUCTOR EQUIPMENT ASSOCIATES INC.
    Inventors: Peter L. Kellerman, Frederick Carlson, Frank Sinclair
  • Publication number: 20090315220
    Abstract: An apparatus to pump a melt is disclosed. The pump has a chamber that defines a cavity configured to hold the melt. A gas source is in fluid communication with the chamber. A first valve is between the chamber and a first pipe and a second valve is between the chamber and a second pipe. The valves may be check valves in one embodiment.
    Type: Application
    Filed: June 18, 2009
    Publication date: December 24, 2009
    Applicant: VARIAN SEMICONDUCTOR EQUIPMENT ASSOCIATES, INC.
    Inventors: Peter L. Kellerman, Frank Sinclair, Frederick Carlson
  • Publication number: 20090302281
    Abstract: A dislocation-free sheet may be formed from a melt. A sheet of material with a first width is formed on a melt of the material using a cooling plate. This sheet has dislocations. The sheet is transported with respect to the cooling plate and the dislocations migrate to an edge of the sheet. The first width of the sheet is increased to a second width by the cooling plate. The sheet does not have dislocations at the second width. The cooling plate may have a shape with two different widths in one instance. The cooling plate may have segments that operate at different temperatures to increase the width of the sheet in another instance. The sheet may be pulled or flowed with respect to the cooling plate.
    Type: Application
    Filed: June 4, 2009
    Publication date: December 10, 2009
    Applicant: VARIAN SEMICONDUCTOR EQUIPMENT ASSOCIATES, INC.
    Inventors: Peter L. Kellerman, Frank Sinclair, Frederick Carlson, Nicholas P.T. Bateman, Robert J. Mitchell
  • Patent number: 7598495
    Abstract: A focusing particle trap system for ion implantation comprising an ion beam source that generates an ion beam, a beam line assembly that receives the ion beam from the ion beam source comprising a mass analyzer that selectively passes selected ions, a focusing electrostatic particle trap that receives the ion beam and removes particles from the ion beam comprising an entrance electrode comprising an entrance aperture and biased to a first base voltage, wherein the first surface of the entrance electrode is facing away from a center electrode and is approximately flat, wherein the second surface of the entrance electrode is facing toward the center electrode and is concave, wherein the center electrode is positioned a distance downstream from the entrance electrode comprising a center aperture and biased to a center voltage, wherein the center voltage is less than the first base voltage, wherein the first surface of the center electrode is facing toward the entrance electrode and is convex, wherein the second
    Type: Grant
    Filed: April 25, 2007
    Date of Patent: October 6, 2009
    Assignee: Axcelis Technologies, Inc.
    Inventors: Peter L. Kellerman, Victor M. Benveniste, Alexander S. Perel, Brian S. Freer, Michael A. Graf
  • Publication number: 20090233396
    Abstract: This sheet production apparatus comprises a vessel defining a channel configured to hold a melt. The melt is configured to flow from a first point to a second point of the channel. A cooling plate is disposed proximate the melt and is configured to form a sheet on the melt. A spillway is disposed at the second point of the channel. This spillway is configured to separate the sheet from the melt.
    Type: Application
    Filed: March 12, 2009
    Publication date: September 17, 2009
    Applicant: VARIAN SEMICONDUCTOR EQUIPMENT ASSOCIATES, INC.
    Inventors: Peter L. KELLERMAN, Frank SINCLAIR
  • Publication number: 20090231597
    Abstract: A sheet measurement apparatus has a sheet disposed in a melt. The measurement system uses a beam to determine a dimension of the sheet. This dimension may be, for example, height or width. The beam may be, for example, collimated light, a laser, x-rays, or gamma rays. The production of the sheet may be altered based on the measurements.
    Type: Application
    Filed: March 12, 2009
    Publication date: September 17, 2009
    Applicant: VARIAN SEMICONDUTOR EQUIPMENT ASSOCIATES, INC.
    Inventors: Christopher A. ROWLAND, Peter L. Kellerman, Frank Sinclair, Julian G. Blake, Nicholas P.T. Bateman
  • Publication number: 20090121149
    Abstract: Techniques for shaping an ion beam are disclosed. In one particular exemplary embodiment, the techniques may be realized as an apparatus for shaping an ion beam. The apparatus may comprise an entrance electrode biased at a first voltage potential, wherein an ion beam enters the entrance electrode, an exit electrode biased at a second voltage potential, wherein the ion beam exits the exit electrode, and a first suppression electrode and a second suppression electrode positioned between the entrance electrode and the exit electrode, wherein the first suppression electrode and the second suppression electrode are independently biased to variably focus the ion beam.
    Type: Application
    Filed: November 9, 2007
    Publication date: May 14, 2009
    Applicant: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Svetlana Radovanov, Frank Sinclair, Peter L. Kellerman, Victor M. Benveniste, Robert Lindberg
  • Publication number: 20090121122
    Abstract: Techniques for measuring and controlling ion beam angle and density uniformity are disclosed. In one particular exemplary embodiment, the techniques may be realized as an apparatus for measuring and controlling ion beam angle and density uniformity. The apparatus may include a measuring assembly having an opening, a cup, and at least one collector at the rear of the cup. The apparatus may further include an actuator to move the measuring assembly along an actuation path to scan an ion beam to measure and control ion beam uniformity.
    Type: Application
    Filed: November 13, 2007
    Publication date: May 14, 2009
    Applicant: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Peter L. Kellerman, Kenneth Purser, Svetlana Radovanov, Victor M. Benveniste, Frank Sinclair, John Slocum
  • Patent number: 7421973
    Abstract: An ion shower comprises a plasma source operable to generate source gas ions within a chamber, and an extraction assembly associated with a top portion of the chamber. The extraction assembly is operable to extract ions from the top portion of the chamber. The ion shower further comprises a workpiece support structure associated with the top portion of the chamber that is operable to secure the workpiece having an implantation surface orientated facing downward toward the extraction assembly for implantation thereof. The ion shower of the present invention advantageously facilitates SIMOX processing with a high oxygen fraction, and uniform beam current for next generation processing.
    Type: Grant
    Filed: January 21, 2004
    Date of Patent: September 9, 2008
    Assignee: Axcelis Technologies, Inc.
    Inventors: Peter L. Kellerman, Victor M. Benveniste, William F. DiVergili, Michael P. Bradley
  • Patent number: 7394079
    Abstract: An architecture for a ribbon ion beam ion implanter system is disclosed. In one embodiment, the architecture includes an acceleration/deceleration parallelizing lens system for receiving a fanned ribbon ion beam and for at least parallelizing (and perhaps also accelerate or decelerate) the fanned ribbon ion beam into a substantially parallel ribbon ion beam, and an energy filter system downstream from the acceleration/deceleration parallelizing lens system and prior to a work piece to be implanted by the substantially parallel ribbon ion beam. The acceleration/deceleration parallelizing lens system includes lenses for at least parallelizing (and perhaps also accelerate or decelerate) the fanned ribbon ion beam and acceleration/deceleration lenses for accelerating or decelerating the substantially parallel ribbon ion beam. The parallelizing lens allows delivery of a high current ribbon ion beam to the work piece with energy that can extend down to as low as approximately 200 eV.
    Type: Grant
    Filed: January 27, 2006
    Date of Patent: July 1, 2008
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Kourosh Saadatmand, Peter L. Kellerman
  • Patent number: 7267520
    Abstract: The present invention is directed to a scanning apparatus and method for processing a workpiece, wherein the scanning apparatus comprises a wafer arm and moving arm fixedly coupled to one another, wherein the wafer arm and moving arm are operable to rotate about a first axis. An end effector, whereon the workpiece resides, is coupled to the wafer arm. A rotational shaft couples the wafer arm and moving arm to a first actuator, wherein the first actuator provides a rotational force to the shaft. A momentum balance mechanism is coupled to the shaft and is operable to generally reverse the rotational direction of the shaft. The momentum balance mechanism comprises one or more fixed spring elements operable to provide a force to a moving spring element coupled to the moving arm. A controller is further operable to maintain a generally constant translational velocity of the end effector within a predetermined scanning range.
    Type: Grant
    Filed: April 5, 2005
    Date of Patent: September 11, 2007
    Assignee: Axcelis Technologies, Inc.
    Inventors: Peter L. Kellerman, Victor M. Benveniste, Kourosh Saadatmand, Mehran Asdigha, Douglas A. Brown
  • Patent number: 7151658
    Abstract: An electrostatic clamp for securing a semiconductor wafer during processing. The electrostatic clamp includes a base member, a first dielectric layer, a second dielectric layer having a gas pressure distribution micro-groove network formed therein, a gas gap positioned between a backside of a semiconductor wafer and the second dielectric layer, and a pair of high voltage electrodes positioned between the first dielectric layer and the second dielectric layer.
    Type: Grant
    Filed: April 22, 2003
    Date of Patent: December 19, 2006
    Assignee: Axcelis Technologies, Inc.
    Inventors: Peter L. Kellerman, Victor Benveniste, Michel Pharand, Dale K. Stone
  • Patent number: 7078707
    Abstract: Methods are provided for calibrating an ion beam scanner in an ion implantation system, comprising measuring a plurality of initial current density values at a plurality of locations along a scan direction, where the values individually correspond to one of a plurality of initial voltage scan intervals and one of a corresponding plurality of initial scan time values, creating a system of linear equations based on the measured initial current density values and the initial voltage scan intervals, and determining a set of scan time values that correspond to a solution to the system of linear equations that reduces current density profile deviations. A calibration system is provided for calibrating an ion beam scanner in an ion implantation system, comprising a dosimetry system and a control system.
    Type: Grant
    Filed: January 4, 2005
    Date of Patent: July 18, 2006
    Assignee: Axcelis Technologies, Inc.
    Inventors: Victor M. Benveniste, Peter L. Kellerman, William F. DiVergilio
  • Patent number: 7072165
    Abstract: The present invention is directed to a semiconductor processing apparatus and a method for clamping a semiconductor substrate and controlling a heat transfer associated therewith. According to one aspect of the present invention, a multi-polar electrostatic chuck and associated method is disclosed which provides a controlled and uniform heat transfer coefficient across a surface thereof. The multi-polar electrostatic chuck comprises a semiconductor platform having a plurality of protrusions that define gaps therebetween, wherein a distance or depth of the gaps is uniform and associated with a mean free path of the cooling gas therein. The electrostatic chuck is permits a control of a backside pressure of a cooling gas within the plurality of gaps to thus control a heat transfer coefficient of the cooling gas.
    Type: Grant
    Filed: August 18, 2003
    Date of Patent: July 4, 2006
    Assignee: Axcelis Technologies, Inc.
    Inventors: Peter L. Kellerman, Shu Qin, Douglas A. Brown
  • Patent number: 7072166
    Abstract: The present invention is directed to a method and a system for clamping a wafer to a J-R electrostatic chuck using a single-phase square wave AC clamping voltage. The method comprises determining a single-phase square wave clamping voltage for the J-R electrostatic chuck, wherein the determination is based, at least in part, on a minimum residual clamping force associated with the wafer and the electrostatic chuck and a surface topography of a leaky dielectric layer associated therewith. The wafer is placed on the electrostatic chuck; and the determined clamping voltage is applied to the electrostatic chuck, therein electrostatically clamping the wafer to the electrostatic chuck, wherein at least the minimum residual clamping force is maintained during a polarity switch of the single-phase square wave clamping voltage.
    Type: Grant
    Filed: September 12, 2003
    Date of Patent: July 4, 2006
    Assignee: Axcelis Technologies, Inc.
    Inventors: Shu Qin, Peter L. Kellerman
  • Patent number: 7033443
    Abstract: The present invention is directed to a semiconductor thermal processing apparatus and a method for thermally cooling a semiconductor substrate. According to one aspect of the present invention, a gas-cooled clamp and associated method is disclosed which provides cooling of a substrate by thermal conduction generally in the free molecular regime. The gas-cooled clamp comprises a clamping plate having a plurality of protrusions that define gaps therebetween, wherein a distance or depth of the gaps are associated with a mean free path of the cooling gas therein. The gas-cooled clamp further comprises a pressure control system operable to control a backside pressure of the cooling gas within the plurality of gaps to thus control a heat transfer coefficient of the cooling gas, wherein the heat transfer coefficient of the cooling gas is primarily a function of the pressure and substantially independent of the gap distance.
    Type: Grant
    Filed: March 28, 2003
    Date of Patent: April 25, 2006
    Assignee: Axcelis Technologies, Inc.
    Inventors: Peter L. Kellerman, Victor M. Benveniste, Frederick M. Carlson
  • Patent number: 7019314
    Abstract: Systems and methods are provided for focusing a scanned ion beam in an ion implanter. A beam focusing system is provided, comprising first and second magnets providing corresponding magnetic fields that cooperatively provide a magnetic focusing field having a time-varying focusing field center generally corresponding to a time-varying beam position of a scanned ion beam along a scan direction. Methods are presented, comprising providing a focusing field having a focusing field center in the scan plane, and dynamically adjusting the focusing field such that the focusing field center is generally coincident with a time-varying beam position of the scanned ion beam along the scan direction.
    Type: Grant
    Filed: October 18, 2004
    Date of Patent: March 28, 2006
    Assignee: Axcelis Technologies, Inc.
    Inventors: Victor M. Benveniste, Peter L. Kellerman
  • Patent number: 6947274
    Abstract: The present invention is directed to a method for clamping a wafer to an electrostatic chuck using a single-phase square wave AC clamping voltage. The method comprises determining a single-phase square wave clamping voltage for the electrostatic chuck, wherein the determination is based, at least in part, on an inertial response time of the wafer. The wafer is placed on the electrostatic chuck, wherein a gap between the electrostatic chuck and the wafer is defined. The determined single-phase square wave clamping voltage is then applied, wherein the wafer is generally clamped to the electrostatic chuck within a predetermined distance, while an amount of electrostatic charge is generally not allowed to accumulate, thereby enabling a fast de-clamping of the wafer.
    Type: Grant
    Filed: September 8, 2003
    Date of Patent: September 20, 2005
    Assignee: Axcelis Technologies, Inc.
    Inventors: Peter L. Kellerman, Shu Qin, William F. DiVergilio
  • Patent number: 6946403
    Abstract: The present invention is directed to a method of forming a clamping plate for a multi-polar electrostatic chuck. The method comprises forming a first electrically conductive layer over a semiconductor platform and defining a plurality of portions of the first electrically conductive layer which are electrically isolated from one another. A first electrically insulative layer is formed over the first electrically conductive layer, the first electrically insulative layer comprising a top surface having a plurality of MEMS protrusions extending a first distance therefrom. A plurality of poles are furthermore electrically connected to the respective plurality of portions of the first electrically conductive layer, wherein a voltage applied between the plurality of poles is operable to induce an electrostatic force in the clamping plate.
    Type: Grant
    Filed: October 28, 2003
    Date of Patent: September 20, 2005
    Assignee: Axcelis Technologies, Inc.
    Inventors: Peter L. Kellerman, Shu Qin, Ernie Allen, Douglas A. Brown
  • Patent number: 6905984
    Abstract: The present invention is directed to a method for clamping and processing a semiconductor substrate using a semiconductor processing apparatus. According to one aspect of the present invention, a multi-polar electrostatic chuck and associated method is disclosed which provides heating or cooling of a substrate by thermal contact conduction between the electrostatic chuck and the substrate. The multi-polar electrostatic chuck includes a semiconductor platform having a plurality of protrusions that define gaps therebetween, wherein a surface roughness of the plurality of protrusions is less than 100 Angstroms. The electrostatic chuck further includes a voltage control system operable to control a voltage applied to the electrostatic chuck to thus control a contact heat transfer coefficient of the electrostatic chuck, wherein the heat transfer coefficient of the electrostatic chuck is primarily a function of a contact pressure between the substrate and the plurality of protrusions.
    Type: Grant
    Filed: October 10, 2003
    Date of Patent: June 14, 2005
    Assignee: Axcelis Technologies, Inc.
    Inventors: Peter L. Kellerman, Shu Qin, Ernie Allen, Douglas A. Brown