Patents by Inventor Peter Love

Peter Love has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240091783
    Abstract: There is provided a bracket for a biological sample analyser. The bracket comprises abase and an arm extending from the base, the base being engageable with a platform of a biological sample analyser, wherein, when the base is engaged with the platform, the arm extends into a sample plate bay of the biological sample analyser prohibiting access to a portion of the bay. The arm thereby limits misalignment of a sample plate in the bay by blocking access to a portion of the bay only required when the sample plate is loaded into the bay in an incorrect orientation. A biological sample analyser comprising a bay in which a sample plate is loadable in use and the bracket is also provided.
    Type: Application
    Filed: January 21, 2022
    Publication date: March 21, 2024
    Inventors: Dale Love, Peter Fitzgerald, Ivan McConnell, Christina McFadden
  • Patent number: 11617313
    Abstract: An irrigation system for an area receives wide-area meteorological prediction data and sensors deployed within the area collect local-area sensor data. A processor stores received data as historical wide-area meteorological prediction data and data from the sensors as historical local-area sensor data. The processor determines a relationship between the historical wide-area meteorological prediction data and the historical local-area sensor data based on the historical wide-area meteorological prediction data and the historical local-area sensor data, and calculates a prediction on a local-area parameter for a future point in time based on current wide-area meteorological prediction data, and the calculated relationship. The area is then controlled based on the prediction.
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: April 4, 2023
    Assignee: THE YIELD TECHNOLOGY SOLUTIONS PTY LTD
    Inventors: Simon Allen, Peter Love, Nicolene Abrie, Elizabeth Graham
  • Patent number: 11526463
    Abstract: Analog processors for solving various computational problems are provided. Such analog processors comprise a plurality of quantum devices, arranged in a lattice, together with a plurality of coupling devices. The analog processors further comprise bias control systems each configured to apply a local effective bias on a corresponding quantum device. A set of coupling devices in the plurality of coupling devices is configured to couple nearest-neighbor quantum devices in the lattice. Another set of coupling devices is configured to couple next-nearest neighbor quantum devices. The analog processors further comprise a plurality of coupling control systems each configured to tune the coupling value of a corresponding coupling device in the plurality of coupling devices to a coupling. Such quantum processors further comprise a set of readout devices each configured to measure the information from a corresponding quantum device in the plurality of quantum devices.
    Type: Grant
    Filed: June 23, 2021
    Date of Patent: December 13, 2022
    Assignee: D-WAVE SYSTEMS INC.
    Inventors: Alexander Maassen van den Brink, Peter Love, Mohammad H. S. Amin, Geordie Rose, David Grant, Miles F. H. Steininger, Paul I. Bunyk, Andrew J. Berkley
  • Publication number: 20210342289
    Abstract: Analog processors for solving various computational problems are provided. Such analog processors comprise a plurality of quantum devices, arranged in a lattice, together with a plurality of coupling devices. The analog processors further comprise bias control systems each configured to apply a local effective bias on a corresponding quantum device. A set of coupling devices in the plurality of coupling devices is configured to couple nearest-neighbor quantum devices in the lattice. Another set of coupling devices is configured to couple next-nearest neighbor quantum devices. The analog processors further comprise a plurality of coupling control systems each configured to tune the coupling value of a corresponding coupling device in the plurality of coupling devices to a coupling. Such quantum processors further comprise a set of readout devices each configured to measure the information from a corresponding quantum device in the plurality of quantum devices.
    Type: Application
    Filed: June 23, 2021
    Publication date: November 4, 2021
    Inventors: Alexander Maassen van den Brink, Peter Love, Mohammad H.S. Amin, Geordie Rose, David Grant, Miles F.H. Steininger, Paul I. Bunyk, Andrew J. Berkley
  • Patent number: 11093440
    Abstract: Analog processors for solving various computational problems are provided. Such analog processors comprise a plurality of quantum devices, arranged in a lattice, together with a plurality of coupling devices. The analog processors further comprise bias control systems each configured to apply a local effective bias on a corresponding quantum device. A set of coupling devices in the plurality of coupling devices is configured to couple nearest-neighbor quantum devices in the lattice. Another set of coupling devices is configured to couple next-nearest neighbor quantum devices. The analog processors further comprise a plurality of coupling control systems each configured to tune the coupling value of a corresponding coupling device in the plurality of coupling devices to a coupling. Such quantum processors further comprise a set of readout devices each configured to measure the information from a corresponding quantum device in the plurality of quantum devices.
    Type: Grant
    Filed: April 27, 2020
    Date of Patent: August 17, 2021
    Assignee: D-WAVE SYSTEMS INC.
    Inventors: Alexander Maassen van den Brink, Peter Love, Mohammad H. S. Amin, Geordie Rose, David Grant, Miles F. H. Steininger, Paul I. Bunyk, Andrew J. Berkley
  • Patent number: 10966099
    Abstract: Various communication systems may benefit from determining a venue value index before deploying wireless communication in the area. A method may include identifying the one or more wireless coverage issues within an area. The method may also include receiving data demand information for the area having the identified one or more wireless coverage issues. In addition, the method may include receiving or determining a total cost of ownership. The total cost of ownership may include a cost of fixing the one or more wireless coverage issues within the area. Further, the method may include calculating a venue value index of the area based on at least one of the total cost of ownership, the data demand information, or an average spectrum efficiency. The method may in addition include performing at least one network administrative task based on the venue value index.
    Type: Grant
    Filed: February 23, 2018
    Date of Patent: March 30, 2021
    Assignee: Nokia Solutions and Networks Oy
    Inventors: Ales Vanek, Reinhard Voese, Amit Mehrotra, Jack Zatz, Peter Love, Carl Wijting, Anoop Kulkarni
  • Patent number: 10922617
    Abstract: Generating a computing specification to be executed by a quantum processor includes: accepting a problem specification that corresponds to a second-quantized representation of a fermionic Hamiltonian, and transforming the fermionic Hamiltonian into a first qubit Hamiltonian including a first set of qubits that encode a fermionic state specified by occupancy of spin orbitals. An occupancy of any spin orbital is encoded in a number of qubits that is logarithmic in the number of spin orbitals, and a parity for a transition between any two spin orbitals is encoded in a number of qubits that is logarithmic in the number of spin orbitals. An eigenspectrum of a second qubit Hamiltonian, including the first set of qubits and a second set of qubit, includes a low-energy subspace and a high-energy subspace, and an eigenspectrum of the first qubit Hamiltonian is approximated by a set of low-energy eigenvalues of the low-energy subspace.
    Type: Grant
    Filed: August 8, 2019
    Date of Patent: February 16, 2021
    Assignee: President and Fellows of Harvard College
    Inventors: Ryan Babbush, Peter Love, Alan Aspuru-Guzik
  • Publication number: 20200390044
    Abstract: An irrigation system for an area receives wide-area meteorological prediction data and sensors deployed within the area collect local-area sensor data. A processor stores received data as historical wide-area meteorological prediction data and data from the sensors as historical local-area sensor data. The processor determines a relationship between the historical wide-area meteorological prediction data and the historical local-area sensor data based on the historical wide-area meteorological prediction data and the historical local-area sensor data, and calculates a prediction on a local-area parameter for a future point in time based on current wide-area meteorological prediction data, and the calculated relationship. The area is then controlled based on the prediction.
    Type: Application
    Filed: August 31, 2020
    Publication date: December 17, 2020
    Inventors: Simon ALLEN, Peter LOVE, Nicolene ABRIE, Elizabeth GRAHAM
  • Patent number: 10798891
    Abstract: This disclosure relates to an irrigation system for an agricultural production area. The system receives wide-area meteorological prediction data and sensors deployed within the agricultural production area collect local-area sensor data. A processor stores received data as historical wide-area meteorological prediction data and data from the sensors as historical local-area sensor data. The processor determines a correlation between the historical wide-area meteorological prediction data and the historical local-area sensor data based on the historical wide-area meteorological prediction data and the historical local-area sensor data, and calculates a prediction on water supply relative to water demand within the agricultural production area based on current wide-area meteorological prediction data, and the calculated correlation.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: October 13, 2020
    Assignee: THE YIELD TECHNOLOGY SOLUTIONS PTY LTD
    Inventors: Simon Allen, Peter Love, Nicolene Abrie, Elizabeth Graham
  • Publication number: 20200293486
    Abstract: Analog processors for solving various computational problems are provided. Such analog processors comprise a plurality of quantum devices, arranged in a lattice, together with a plurality of coupling devices. The analog processors further comprise bias control systems each configured to apply a local effective bias on a corresponding quantum device. A set of coupling devices in the plurality of coupling devices is configured to couple nearest-neighbor quantum devices in the lattice. Another set of coupling devices is configured to couple next-nearest neighbor quantum devices. The analog processors further comprise a plurality of coupling control systems each configured to tune the coupling value of a corresponding coupling device in the plurality of coupling devices to a coupling. Such quantum processors further comprise a set of readout devices each configured to measure the information from a corresponding quantum device in the plurality of quantum devices.
    Type: Application
    Filed: April 27, 2020
    Publication date: September 17, 2020
    Inventors: Alexander Maassen van den Brink, Peter Love, Mohammad H.S. Amin, Geordie Rose, David Grant, Miles F.H. Steininger, Paul I. Bunyk, Andrew J. Berkley
  • Publication number: 20200242501
    Abstract: Generating a computing specification to be executed by a quantum processor includes: accepting a problem specification that corresponds to a second-quantized representation of a fermionic Hamiltonian, and transforming the fermionic Hamiltonian into a first qubit Hamiltonian including a first set of qubits that encode a fermionic state specified by occupancy of spin orbitals. An occupancy of any spin orbital is encoded in a number of qubits that is logarithmic in the number of spin orbitals, and a parity for a transition between any two spin orbitals is encoded in a number of qubits that is logarithmic in the number of spin orbitals. An eigenspectrum of a second qubit Hamiltonian, including the first set of qubits and a second set of qubit, includes a low-energy subspace and a high-energy subspace, and an eigenspectrum of the first qubit Hamiltonian is approximated by a set of low-energy eigenvalues of the low-energy subspace.
    Type: Application
    Filed: August 8, 2019
    Publication date: July 30, 2020
    Inventors: Ryan Babbush, Peter Love, Alan Aspuru-Guzik
  • Publication number: 20200213864
    Abstract: Various communication systems may benefit from determining a venue value index before deploying wireless communication in the area. A method may include identifying the one or more wireless coverage issues within an area. The method may also include receiving data demand information for the area having the identified one or more wireless coverage issues. In addition, the in method may include receiving or determining a total cost of ownership. The total cost of ownership may include a cost of fixing the one or more wireless coverage issues within the area. Further, the method may include calculating a venue value index of the area based on at least one of the total cost of ownership, the data demand information, or an average spectrum efficiency. The method may in addition include performing at least one network administrative task based on the venue value index.
    Type: Application
    Filed: February 23, 2018
    Publication date: July 2, 2020
    Inventors: Ales Vanek, Reinhard Voese, Amit Mehrotra, Jack Zatz, Peter Love, Carl Wijting, Anoop Kulkarni
  • Patent number: 10691633
    Abstract: Methods and systems for solving various computational problems with quantum processors are provided. Such quantum processors comprise a plurality of quantum devices together with a plurality of coupling devices. The quantum processor is initialized by setting states of the quantum devices and coupling devices and allowed to evolve to a final state which approximates a natural ground state of the computational problem. The final state can include values of nodes arranged in a lattice in the quantum processor and can represent a solution to the computational processor. The computational problem can have complexity P, NP, NP-Hard, or NP-Complete and may be mapped to a quantum processor with nearest-neighbor and next-nearest-neighbor couplings. The solution to the computational problem can be read out from the quantum processor and transmitted as a data signal embodied in a carrier wave.
    Type: Grant
    Filed: May 23, 2019
    Date of Patent: June 23, 2020
    Assignee: D-WAVE SYSTEMS, INC.
    Inventors: Alexander Maassen van den Brink, Peter Love, Mohammad H. S. Amin, Geordie Rose, David Grant, Miles F. H. Steininger, Paul I. Bunyk, Andrew J. Berkley
  • Publication number: 20190324941
    Abstract: Analog processors for solving various computational problems are provided. Such analog processors comprise a plurality of quantum devices, arranged in a lattice, together with a plurality of coupling devices. The analog processors further comprise bias control systems each configured to apply a local effective bias on a corresponding quantum device. A set of coupling devices in the plurality of coupling devices is configured to couple nearest-neighbor quantum devices in the lattice. Another set of coupling devices is configured to couple next-nearest neighbor quantum devices. The analog processors further comprise a plurality of coupling control systems each configured to tune the coupling value of a corresponding coupling device in the plurality of coupling devices to a coupling. Such quantum processors further comprise a set of readout devices each configured to measure the information from a corresponding quantum device in the plurality of quantum devices.
    Type: Application
    Filed: May 23, 2019
    Publication date: October 24, 2019
    Inventors: Alexander Maassen van den Brink, Peter Love, Mohammad H.S. Amin, Geordie Rose, David Grant, Miles F.H. Steininger, Paul I. Bunyk, Andrew J. Berkley
  • Patent number: 10417574
    Abstract: Generating a computing specification to be executed by a quantum processor includes: accepting a problem specification that corresponds to a second-quantized representation of a fermionic Hamiltonian, and transforming the fermionic Hamiltonian into a first qubit Hamiltonian including a first set of qubits that encode a fermionic state specified by occupancy of spin orbitals. An occupancy of any spin orbital is encoded in a number of qubits that is logarithmic in the number of spin orbitals, and a parity for a transition between any two spin orbitals is encoded in a number of qubits that is logarithmic in the number of spin orbitals. An eigenspectrum of a second qubit Hamiltonian, including the first set of qubits and a second set of qubit, includes a low-energy subspace and a high-energy subspace, and an eigenspectrum of the first qubit Hamiltonian is approximated by a set of low-energy eigenvalues of the low-energy subspace.
    Type: Grant
    Filed: November 4, 2014
    Date of Patent: September 17, 2019
    Assignee: President and Fellows of Harvard College
    Inventors: Ryan Babbush, Peter Love, Alan Aspuru-Guzik
  • Publication number: 20190254242
    Abstract: This disclosure relates to an irrigation system for an agricultural production area. The system receives wide-area meteorological prediction data and sensors deployed within the agricultural production area collect local-area sensor data. A processor stores received data as historical wide-area meteorological prediction data and data from the sensors as historical local-area sensor data. The processor determines a correlation between the historical wide-area meteorological prediction data and the historical local-area sensor data based on the historical wide-area meteorological prediction data and the historical local-area sensor data, and calculates a prediction on water supply relative to water demand within the agricultural production area based on current wide-area meteorological prediction data, and the calculated correlation.
    Type: Application
    Filed: October 30, 2017
    Publication date: August 22, 2019
    Inventors: Simon ALLEN, Peter LOVE, Nicolene ABRIE, Elizabeth GRAHAM
  • Patent number: 10346349
    Abstract: Analog processors for solving various computational problems are provided. Such analog processors comprise a plurality of quantum devices, arranged in a lattice, together with a plurality of coupling devices. The analog processors further comprise bias control systems each configured to apply a local effective bias on a corresponding quantum device. A set of coupling devices in the plurality of coupling devices is configured to couple nearest-neighbor quantum devices in the lattice. Another set of coupling devices is configured to couple next-nearest neighbor quantum devices. The analog processors further comprise a plurality of coupling control systems each configured to tune the coupling value of a corresponding coupling device in the plurality of coupling devices to a coupling. Such quantum processors further comprise a set of readout devices each configured to measure the information from a corresponding quantum device in the plurality of quantum devices.
    Type: Grant
    Filed: October 29, 2018
    Date of Patent: July 9, 2019
    Assignee: D-WAVE SYSTEMS INC.
    Inventors: Alexander Maassen van den Brink, Peter Love, Mohammad H. S. Amin, Geordie Rose, David Grant, Miles F. H. Steininger, Paul I. Bunyk, Andrew J. Berkley
  • Publication number: 20190087385
    Abstract: Analog processors for solving various computational problems are provided. Such analog processors comprise a plurality of quantum devices, arranged in a lattice, together with a plurality of coupling devices. The analog processors further comprise bias control systems each configured to apply a local effective bias on a corresponding quantum device. A set of coupling devices in the plurality of coupling devices is configured to couple nearest-neighbor quantum devices in the lattice. Another set of coupling devices is configured to couple next-nearest neighbor quantum devices. The analog processors further comprise a plurality of coupling control systems each configured to tune the coupling value of a corresponding coupling device in the plurality of coupling devices to a coupling. Such quantum processors further comprise a set of readout devices each configured to measure the information from a corresponding quantum device in the plurality of quantum devices.
    Type: Application
    Filed: October 29, 2018
    Publication date: March 21, 2019
    Inventors: Alexander Maassen van den Brink, Peter Love, Mohammad H.S. Amin, Geordie Rose, David Grant, Miles F. H. Steininger, Paul I. Bunyk, Andrew J. Berkley
  • Patent number: 10140248
    Abstract: Analog processors for solving various computational problems are provided. Such analog processors comprise a plurality of quantum devices, arranged in a lattice, together with a plurality of coupling devices. Such quantum processors further comprise a set of readout devices each configured to measure the information from a corresponding quantum device in the plurality of quantum devices. A method of determining a result of a computational problem using an analog processor includes receiving at a first digital computer, including a digital processor, an instance of the computational problem defined over an input graph, wherein the input graph is non-planar; and determining a mapping of the instance of the computational problem onto the analog processor, by the digital processor.
    Type: Grant
    Filed: June 28, 2017
    Date of Patent: November 27, 2018
    Assignee: D-WAVE SYSTEMS INC.
    Inventors: Alexander Maassen van den Brink, Peter Love, Mohammad H. S. Amin, Geordie Rose, David Grant, Miles F. H. Steininger, Paul I. Bunyk, Andrew J. Berkley
  • Publication number: 20170300454
    Abstract: Analog processors for solving various computational problems are provided. Such analog processors comprise a plurality of quantum devices, arranged in a lattice, together with a plurality of coupling devices. The analog processors further comprise bias control systems each configured to apply a local effective bias on a corresponding quantum device. A set of coupling devices in the plurality of coupling devices is configured to couple nearest-neighbor quantum devices in the lattice. Another set of coupling devices is configured to couple next-nearest neighbor quantum devices. The analog processors further comprise a plurality of coupling control systems each configured to tune the coupling value of a corresponding coupling device in the plurality of coupling devices to a coupling. Such quantum processors further comprise a set of readout devices each configured to measure the information from a corresponding quantum device in the plurality of quantum devices.
    Type: Application
    Filed: June 28, 2017
    Publication date: October 19, 2017
    Inventors: Alexander Maassen van den Brink, Peter Love, Mohammad H.S. Amin, Geordie Rose, David Grant, Miles F.H. Steininger, Paul I. Bunyk, Andrew J. Berkley