Patents by Inventor Peter M. Rabinovich

Peter M. Rabinovich has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10155038
    Abstract: Compositions and methods of making cells using RNA, and cells made using the disclosed compositions and methods are also provided. In exemplary embodiments, RNA is transfected into cells to effect a molecular, biological, physiological, or histological change in the cells. In preferred embodiments, the RNA is prepared in vitro, more preferably using a DNA template according to the provided compositions and methods. Methods for treating or inhibiting a disorder or disease such cancer are also provided. The methods can include, for example, locally or systemically administering to the host an effective amount of one or more RNAs; or an effective amount of population of cells isolated from the subject or a syngeneic or histocompatible subject, contacted ex vivo with one or RNAs, and optionally expanded. The cells can be, for example, immune cells or stem cells.
    Type: Grant
    Filed: January 27, 2016
    Date of Patent: December 18, 2018
    Assignee: Yale University
    Inventors: Peter M. Rabinovich, Sherman M. Weissman, Marina E. Komarovskaya, Erkut Bahceci, Samuel Katz, Efim Golub
  • Patent number: 10017782
    Abstract: RNA prepared by in vitro transcription using a polymerase chain reaction (PCR)-generated template can be introduced into a cell to modulate cell activity. This method is useful in de-differentiating somatic cells to pluripotent, multipotent, or unipotent cells; re-differentiating stem cells into differentiated cells; or reprogramming of somatic cells to modulate cell activities such as metabolism. Cells can also be transfected with inhibitory RNAs, such as small interfering RNA (siRNA) or micro RNA (miRNA), or combinations thereof to induce reprogramming of somatic cells. For example, target cells are isolated from a donor, contacted with one or more RNA's causing the cells to be de-differentiated, re-differentiated, or reprogrammed in vitro, and administered to a patient in need thereof. The resulting cells are useful for treating one or more symptoms of a variety of diseases and disorders, for organ regeneration, and for restoration of the immune system.
    Type: Grant
    Filed: February 1, 2016
    Date of Patent: July 10, 2018
    Assignee: Yale University
    Inventors: Peter M. Rabinovich, Sherman M. Weissman, Erkut Bahceci, Marina E. Komarovskaya
  • Patent number: 9951349
    Abstract: Compositions for transient but prolonged exogenous mRNA expression through the use of the transcription system of negative strand RNA viruses, and methods of use thereof are disclosed. In some embodiments, the system contains only RNAs and does not include any DNA molecules. The compositions typically include an RNA template unit (rTeUn) that includes a virus regulatory sequences operably linked to a coding sequence of interest. The rTeUn is typically transfected to a host cell's cytoplasm in the presence of virus expression system proteins that mediate replication of the rTeUn and transcription of the transgene. The rTeUn RNA bonded to viral proteins exhibits high resistance to degradation, prolonged duration of expression, and is free of viral genes. The compositions can be used to reprogram cell. For example, the compositions and methods can be used to redirected lymphocytes to target cancer cells, or to dedifferentiate somatic cells into induce pluripotent stem cells.
    Type: Grant
    Filed: September 27, 2012
    Date of Patent: April 24, 2018
    Assignee: Yale University
    Inventors: Peter M. Rabinovich, Sherman M. Weissman
  • Publication number: 20160230188
    Abstract: RNA prepared by in vitro transcription using a polymerase chain reaction (PCR)-generated template can be introduced into a cell to modulate cell activity. This method is useful in de-differentiating somatic cells to pluripotent, multipotent, or unipotent cells; re-differentiating stem cells into differentiated cells; or reprogramming of somatic cells to modulate cell activities such as metabolism. Cells can also be transfected with inhibitory RNAs, such as small interfering RNA (siRNA) or micro RNA (miRNA), or combinations thereof to induce reprogramming of somatic cells. For example, target cells are isolated from a donor, contacted with one or more RNA's causing the cells to be de-differentiated, re-differentiated, or reprogrammed in vitro, and administered to a patient in need thereof. The resulting cells are useful for treating one or more symptoms of a variety of diseases and disorders, for organ regeneration, and for restoration of the immune system.
    Type: Application
    Filed: February 1, 2016
    Publication date: August 11, 2016
    Inventors: Peter M. Rabinovich, Sherman M. Weissman
  • Publication number: 20160151491
    Abstract: Compositions and methods of making cells using RNA, and cells made using the disclosed compositions and methods are also provided. In exemplary embodiments, RNA is transfected into cells to effect a molecular, biological, physiological, or histological change in the cells. In preferred embodiments, the RNA is prepared in vitro, more preferably using a DNA template according to the provided compositions and methods. Methods for treating or inhibiting a disorder or disease such cancer are also provided. The methods can include, for example, locally or systemically administering to the host an effective amount of one or more RNAs; or an effective amount of population of cells isolated from the subject or a syngeneic or histocompatible subject, contacted ex vivo with one or RNAs, and optionally expanded. The cells can be, for example, immune cells or stem cells.
    Type: Application
    Filed: January 27, 2016
    Publication date: June 2, 2016
    Inventors: Peter M. Rabinovich, Sherman M. Weissman, Marina E. Komarovskaya, Erkut Bahceci, Samuel Katz, Efim Golub
  • Patent number: 9249423
    Abstract: RNA prepared by in vitro transcription using a polymerase chain reaction (PCR)-generated template can be introduced into a cell to modulate cell activity. This method is useful in de-differentiating somatic cells to pluripotent, multipotent, or unipotent cells; re-differentiating stem cells into differentiated cells; or reprogramming of somatic cells to modulate cell activities such as metabolism. Cells can also be transfected with inhibitory RNAs, such as small interfering RNA (siRNA) or micro RNA (miRNA), or combinations thereof to induce reprogramming of somatic cells. For example, target cells are isolated from a donor, contacted with one or more RNA's causing the cells to be de-differentiated, re-differentiated, or reprogrammed in vitro, and administered to a patient in need thereof. The resulting cells are useful for treating one or more symptoms of a variety of diseases and disorders, for organ regeneration, and for restoration of the immune system.
    Type: Grant
    Filed: February 2, 2011
    Date of Patent: February 2, 2016
    Assignee: Yale University
    Inventors: Peter M. Rabinovich, Sherman M. Weissman
  • Patent number: 8859229
    Abstract: A method of mRNA production for use in transfection is provided, that involves in vitro transcription of PCR generated templates. This RNA can efficiently transfect different kinds of cells. This approach results in increased efficiency (fidelity and productivity) of mRNA synthesis and is less time consuming because it does not require cloning, and also consequently eliminates the unwanted errors and effects related to RNA made on DNA templates obtained with cloning techniques. The results of transfection of RNAs demonstrate that RNA transfection can be very effective in cells that are exceedingly difficult to transfect efficiently with DNA constructs. The method can be used to deliver genes into cells not- or only poorly transfectable for DNA, in vitro and in vivo.
    Type: Grant
    Filed: February 4, 2008
    Date of Patent: October 14, 2014
    Assignee: Yale University
    Inventors: Peter M. Rabinovich, Sherman M. Weissman, Marina E. Komarovskaya, Erkut Bahceci
  • Publication number: 20140249212
    Abstract: Compositions for transient but prolonged exogenous mRNA expression through the use of the transcription system of negative strand RNA viruses, and methods of use thereof are disclosed. In some embodiments, the system contains only RNAs and does not include any DNA molecules. The compositions typically include an RNA template unit (rTeUn) that includes a virus regulatory sequences operably linked to a coding sequence of interest. The rTeUn is typically transfected to a host cell's cytoplasm in the presence of virus expression system proteins that mediate replication of the rTeUn and transcription of the transgene. The rTeUn RNA bonded to viral proteins exhibits high resistance to degradation, prolonged duration of expression, and is free of viral genes. The compositions can be used to reprogram cell. For example, the compositions and methods can be used to redirected lymphocytes to target cancer cells, or to dedifferentiate somatic cells into induce pluripotent stem cells.
    Type: Application
    Filed: September 27, 2012
    Publication date: September 4, 2014
    Applicant: Yale University
    Inventors: Peter M. Rabinovich, Sherman M. Weissman
  • Publication number: 20110165133
    Abstract: RNA prepared by in vitro transcription using a polymerase chain reaction (PCR)-generated template can be introduced into a cell to modulate cell activity. This method is useful in de-differentiating somatic cells to pluripotent, multipotent, or unipotent cells; re-differentiating stem cells into differentiated cells; or reprogramming of somatic cells to modulate cell activities such as metabolism. Cells can also be transfected with inhibitory RNAs, such as small interfering RNA (siRNA) or micro RNA (miRNA), or combinations thereof to induce reprogramming of somatic cells. For example, target cells are isolated from a donor, contacted with one or more RNA's causing the cells to be de-differentiated, re-differentiated, or reprogrammed in vitro, and administered to a patient in need thereof. The resulting cells are useful for treating one or more symptoms of a variety of diseases and disorders, for organ regeneration, and for restoration of the immune system.
    Type: Application
    Filed: February 2, 2011
    Publication date: July 7, 2011
    Inventors: Peter M. Rabinovich, Sherman M. Weissman
  • Publication number: 20080260706
    Abstract: A method of mRNA production for use in transfection is provided, that involves in vitro transcription of PCR generated templates with specially designed primers, followed by polyA addition, to produce a construct containing 3? and 5? untranslated sequence (“UTR”), a 5? cap and/or Internal Ribosome Entry Site (IRES), the gene to be expressed, and a polyA tail, typically 50-2000 bases in length. This RNA can efficiently transfect different kinds of cells. This approach results in increased efficiency (fidelity and productivity) of mRNA synthesis and is less time consuming because it does not require cloning, and also consequently eliminates the unwanted errors and effects related to RNA made on DNA templates obtained with cloning techniques. The results of transfection of RNAs demonstrate that RNA transfection can be very effective in cells that are exceedingly difficult to transfect efficiently with DNA constructs.
    Type: Application
    Filed: February 4, 2008
    Publication date: October 23, 2008
    Inventors: Peter M. Rabinovich, Sherman M. Weissman, Marina E. Komarovskaya, Erkut Bahceci