Patents by Inventor Peter M. W. Skovgaard

Peter M. W. Skovgaard has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230414412
    Abstract: An apparatus for photothermal ophthalmic treatment comprising: a treatment light source for producing a treatment beam, a scanning module configured for delivering the treatment beam onto separate treatment locations within a treatment target area on a structure of a subject's eye, an aiming light source for producing an aiming beam, wherein the scanning module is configured for delivering the aiming beam to create a visible outline pattern on the structure of the subject's eye, the visible outline pattern being indicative of a periphery of said treatment target area, wherein the visible outline pattern includes one or more pattern elements, each pattern element perceivable as moving along the periphery.
    Type: Application
    Filed: June 28, 2022
    Publication date: December 28, 2023
    Inventors: Bjarke Goeth, Peter M.W. Skovgaard, Greg Fava
  • Publication number: 20120236881
    Abstract: A method and a laser system for generating a pulsed laser signal with a laser signal wavelength and a laser signal repetition rate, the laser system includes a fiber laser unit includes a cladding pumped fiber laser includes a fiber laser light guiding region surrounded by a pump cladding, the fiber laser light guiding region includes at least one active element; at least one pump laser unit for launching a pump signal into the cladding pumped fiber laser, the pump signal unit includes at least one pump diode emitting a signal at a pump signal wavelength; and a modulating unit for modulating the pump signal into a plurality of pump pulses.
    Type: Application
    Filed: August 30, 2010
    Publication date: September 20, 2012
    Applicant: NKT PHOTONICS AS
    Inventors: Thomas Nikolajsen, Peter M.W. Skovgaard
  • Patent number: 7813387
    Abstract: The present invention deals with optical systems for providing short laser pulses. An object of the invention is to provide an optical system providing compact and cost-effective short laser-pulses using fibers with anomalous dispersion and high non-linear thresholds. The object is achieved by a short pulse optical system for generating or processing short laser-pulses, said optical system comprises an optical fiber in the form of a photonic crystal fiber arranged to provide guidance of light in the core region due to the photonic bandgap effect (PBG), where light propagates in a hollow or solid core surrounded by a Silica cladding comprising a substantially periodic distribution of micro-structural elements, and where the refractive index of the core is lower than the effective refractive index of the cladding. The invention may be useful in applications such as laser-based micromachining, thin-film formation, laser cleaning, in medicine and biology.
    Type: Grant
    Filed: March 23, 2006
    Date of Patent: October 12, 2010
    Assignee: NKT Photonics A/S
    Inventors: Claus Friis Pedersen, Peter M. W. Skovgaard
  • Publication number: 20090202204
    Abstract: The invention relates to: An optical coupler for coupling light from at least two input fibres into one output fibre. The invention further relates to a method of fabricating and to the use of an optical coupler. The object of the present invention is to provide an optical coupler, which is relatively easy to manufacture.
    Type: Application
    Filed: March 16, 2007
    Publication date: August 13, 2009
    Applicant: Crystal Fibre A/S
    Inventors: Martin Dybendal Nielsen, Peter M.W. Skovgaard
  • Patent number: 7539382
    Abstract: An optical fiber having an axial direction and a cross section perpendicular to the axial direction, the optical fiber having a first light guiding fiber portion with a cladding region with a plurality of spaced apart cladding voids extending longitudinally in the fiber axial direction and a core region bounded by the cladding region, and a solid light transparent fiber portion having a first end facing the first light guiding fiber portion and a second end forming an end face of the optical fiber. The solid light transparent fiber portion provides a hermetic sealing of the cladding voids of the first light guiding fiber portion. A method of producing such an optical fiber and its use, such as an optical fiber connector and an article having a microstructured optical fiber with hermetically sealed end face, are also included.
    Type: Grant
    Filed: December 17, 2007
    Date of Patent: May 26, 2009
    Assignee: Crystal Fibre A/S
    Inventors: Peter M. W. Skovgaard, Jacob Riis Folkenberg, Guillaume Vienne
  • Patent number: 7532792
    Abstract: An optical coupler for coupling light from at least two input fibers into one output fiber and a method of fabricating and use of an optical coupler. The coupler comprises a) an input section comprising an output end face at one end of the bundling-length of input fibers; and b) an output section comprising an output fiber comprising a confining region for confining light propagated in the input fibers and a surrounding cladding region and having an input end face; wherein the output end face of said input section is optically coupled to the input end face of the output section and at least the confining region of the output fiber is tapered down from a first cross sectional area at the input end face to a second, smaller cross sectional area over a tapering-length of the output fiber.
    Type: Grant
    Filed: March 2, 2007
    Date of Patent: May 12, 2009
    Assignee: Crystal Fibre A/S
    Inventors: Peter M. W. Skovgaard, Martin Dybendal Nielsen
  • Patent number: 7526165
    Abstract: The present invention relates in general to coupling of light from one or more input waveguides to an output waveguide or output section of a waveguide having other physical dimensions and/or optical properties than the input waveguide or waveguides. The invention relates to an optical component in the form of a photonic crystal fiber for coupling light from one component/system with a given numerical aperture to another component/system with another numerical aperture. The invention further relates to methods of producing the optical component, and articles comprising the optical component, and to the use of the optical component. The invention further relates to an optical component comprising a bundle of input fibers that are tapered and fused together to form an input coupler e.g. for coupling light from several light sources into a single waveguide. The invention still further relates to the control of the spatial extension of a guided mode (e.g.
    Type: Grant
    Filed: March 21, 2005
    Date of Patent: April 28, 2009
    Assignee: Crystal Fibre A/S
    Inventors: Martin Dybendal Nielsen, Peter M. W. Skovgaard, Jes Broeng, Guillaume Vienne
  • Publication number: 20090103874
    Abstract: The invention relates to an optical fiber defining a longitudinal direction, the optical fiber comprising a core having a diameter larger than 10 ?m, said core comprises at least two solid segments of different composition, at least one of the segments comprises a photo-sensitive material. The core may be segmented in its cross-sectional direction and/or in its longitudinal direction. The optical fiber may comprise a Bragg grating written in at least one of said solid core segments In a preferred embodiment the optical fiber comprises a core with an effective refractive index ncore, and a cladding surrounding said core, wherein in a cross-section perpendicular to said longitudinal direction, said core being segmented, said core comprising a first core segment with an area a1 and a second core segment with an area a2; said first core segment comprises at least one photo-sensitive material, such as Ge and/or B and/or P doped silica; said second core segment surrounds said first core segment.
    Type: Application
    Filed: March 19, 2007
    Publication date: April 23, 2009
    Applicant: CRYSTAL FIBRE A/S
    Inventors: Jes Broeng, Anders Petersson, Kim Per Hansen, Peter M.W. Skovgaard, Martin Dybendal Nielsen, Thomas Nikolajsen
  • Publication number: 20080159702
    Abstract: An optical fibre having an axial direction and a cross section perpendicular to the axial direction, the optical fibre having a first light guiding fibre portion with a cladding region with a plurality of spaced apart cladding voids extending longitudinally in the fibre axial direction and a core region bounded by the cladding region, and a solid light transparent fibre portion having a first end facing the first light guiding fibre portion and a second end forming an end face of the optical fibre. The solid light transparent fibre portion provides a hermetic sealing of the cladding voids of the first light guiding fibre portion. A method of producing such an optical fibre and its use, such as an optical fibre connector and an article having a microstructured optical fibre with hermetically sealed end face, are also included.
    Type: Application
    Filed: December 17, 2007
    Publication date: July 3, 2008
    Inventors: Peter M.W. Skovgaard, Jacob Riis Folkenberg, Guillaume Vienne
  • Publication number: 20080050069
    Abstract: An optical coupler for coupling light from at least two input fibers into one output fiber and a method of fabricating and use of an optical coupler. The coupler comprises a) an input section comprising an output end face at one end of the bundling-length of input fibers; and b) an output section comprising an output fiber comprising a confining region for confining light propagated in the input fibers and a surrounding cladding region and having an input end face; wherein the output end face of said input section is optically coupled to the input end face of the output section and at least the confining region of the output fiber is tapered down from a first cross sectional area at the input end face to a second, smaller cross sectional area over a tapering-length of the output fiber.
    Type: Application
    Filed: March 2, 2007
    Publication date: February 28, 2008
    Applicant: CRYSTAL FIBRE A/S
    Inventors: Peter M.W. Skovgaard, Martin Dybendal Nielsen
  • Patent number: 7327922
    Abstract: An optical fiber having an axial direction and a cross section perpendicular to said axial direction, said optical fiber comprising: a first light guiding fiber portion (604) having a cladding region with a plurality of spaced apart cladding voids extending longitudinally in the fiber axial direction and a core region bounded by said cladding region, and a solid light transparent fiber portion (602) having a first end facing the first light guiding fiber portion and a second end forming an end face of the optical fiber, said solid light transparent fiber portion providing a hermetic sealing (601) of the cladding voids of the first light guiding fiber portion; a method of its production, and its use, such as an optical fiber connector and an article comprising a microstructured optical fiber with hermetically sealed end face.
    Type: Grant
    Filed: October 9, 2002
    Date of Patent: February 5, 2008
    Assignee: Crystal Fibre A/S
    Inventors: Peter M. W. Skovgaard, Jacob Rijs Folkenberg, Guillaume Vienne
  • Patent number: 7221840
    Abstract: A microstructured optical fibre comprising an inner cladding and an outer cladding; said outer cladding comprising elongated outer cladding features extending in an axial direction of the fibre, and at least one cladding recess extending at least partly through the outer cladding in a radial direction to the inner cladding; said cladding recess providing optical access to the inner cladding; a method of forming a cladding recess in such an optical fibre comprising a step of collapsing a part of the outer cladding features by use of a heat source; an apparatus comprising such a microstructured optical fibre, preferably a laser or an amplifier.
    Type: Grant
    Filed: March 17, 2003
    Date of Patent: May 22, 2007
    Assignee: Crystal Fibre A/S
    Inventors: Guillaume Vienne, Christian Jakobsen, Jes Broeng, Jacob Riis Folkenberg, Peter M. W. Skovgaard
  • Publication number: 20040247271
    Abstract: An optical fibre having an axial direction and a cross section perpendicular to said axial direction, said optical fibre comprising: a first light guiding fibre portion (604) having a cladding region with a plurality of spaced apart cladding voids extending longitudinally in the fibre axial direction and a core region bounded by said cladding region, and a solid light transparent fibre portion (602) having a first end facing the first light guiding fibre portion and a second end forming an end face of the optical fibre, said solid light transparent fibre portion providing a hermetic sealing (601) of the cladding voids of the first light guiding fibre portion; a method of its production, and its use, such as an optical fibre connector and an article comprising a microstructured optical fibre with hermetically sealed end face.
    Type: Application
    Filed: July 28, 2004
    Publication date: December 9, 2004
    Inventors: Peter M. W. Skovgaard, Jacob Rijs Folkenberg, Guillaume Vienne
  • Publication number: 20030123772
    Abstract: The present invention relates to a method and a device for modulating optical signals based on modulating bending losses in bend, quantum well semiconductor waveguide sections. The complex refractive index of the optical active semiconducting components of the waveguide section is modulated by applying a variable electric or electromagnetic field. The modulation of the complex refractive index results in a modulation of the refractive index contrast and the absorption coefficient for the waveguide at the frequency of the light. By carefully adjusting the composition of the semiconducting components and the applied electric field in relation to the frequency of the modulated radiation, the bending losses (and possibly coupling losses) will provide extinction of light guided by the bent waveguide section. The refractive index contrast may be modulated while keeping the absorption coefficient substantially constant and small, whereby the guided light can be modulated only by bending losses.
    Type: Application
    Filed: December 20, 2002
    Publication date: July 3, 2003
    Applicant: Danmarks Tekniske Universitet
    Inventors: Svend Bischoff, Peter M. W. Skovgaard
  • Patent number: 6512860
    Abstract: The present invention relates to a method and a device for modulating optical signals based on modulating bending losses in bend, quantum well semiconductor waveguide sections. The complex refractive index of the optical active semiconducting components of the waveguide section is modulated by applying a variable electric or electromagnetic field. The modulation of the complex refractive index results in a modulation of the refractive index contrast and the absorption coefficient for the waveguide at the frequency of the light. By carefully adjusting the composition of the semiconducting components and the applied electric field in relation to the frequency of the modulated radiation, the bending losses (and possibly coupling losses) will provide extinction of light guided by the bent waveguide section. The refractive index contrast may be modulated while keeping the absorption coefficient substantially constant and small, whereby the guided light can be modulated only by bending losses.
    Type: Grant
    Filed: August 17, 2001
    Date of Patent: January 28, 2003
    Assignee: Danmarks Tekniske Universitet
    Inventors: Svend Bischoff, Peter M. W. Skovgaard
  • Publication number: 20020131664
    Abstract: The present invention relates to a method and a device for modulating optical signals based on modulating bending losses in bend, quantum well semiconductor waveguide sections. The complex refractive index of the optical active semiconducting components of the waveguide section is modulated by applying a variable electric or electromagnetic field. The modulation of the complex refractive index results in a modulation of the refractive index contrast and the absorption coefficient for the waveguide at the frequency of the light. By carefully adjusting the composition of the semiconducting components and the applied electric field in relation to the frequency of the modulated radiation, the bending losses (and possibly coupling losses) will provide extinction of light guided by the bent waveguide section. The refractive index contrast may be modulated while keeping the absorption coefficient substantially constant and small, whereby the guided light can be modulated only by bending losses.
    Type: Application
    Filed: August 17, 2001
    Publication date: September 19, 2002
    Inventors: Svend Bischoff, Peter M. W. Skovgaard