Patents by Inventor Peter Moebius

Peter Moebius has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9310291
    Abstract: The invention relates to a reaction vessel, a device and a method for detecting specific interactions between molecular target and probe molecules. The present invention especially relates to a reaction vessel which has a shape and size typical of a laboratory reaction vessel and in which a supporting element with probe molecules immobilized thereon on predetermined regions is arranged on its base surfaces.
    Type: Grant
    Filed: July 16, 2004
    Date of Patent: April 12, 2016
    Assignee: CLONDIAG CHIP TECHNOLOGIES GMBH
    Inventors: Torsten Schulz, Eugen Ermantraut, Ralf Ehricht, Klaus-Peter Möbius, Gerd Wagner, Joachim Fischer, Thomas Ellinger
  • Patent number: 9097671
    Abstract: A method for assaying a sample for each of multiple analytes is described. The method includes contacting an array of spaced-apart test zones with a liquid sample (e.g., whole blood). The test zones are disposed within a channel of a microfluidic device. The channel is defined by at least one flexible wall and a second wall which may or may not be flexible. Each test zone comprising a probe compound specific for a respective target analyte. The microfluidic device is compressed to reduce the thickness of the channel, which is the distance between the inner surfaces of the walls within the channel. The presence of each analyte is determined by optically detecting an interaction at each of multiple test zones for which the distance between the inner surfaces at the corresponding location is reduced. The interaction at each test zone is indicative of the presence in the sample of a target analyte.
    Type: Grant
    Filed: November 29, 2012
    Date of Patent: August 4, 2015
    Inventors: Torsten Schulz, Thomas Kaiser, Thomas Uhlig, Klaus Peter Möbius, Alexander von Schenk zu Schweinsberg
  • Publication number: 20150177231
    Abstract: A method for assaying a sample for each of multiple analytes is described. The method includes contacting an array of spaced-apart test zones with a liquid sample (e.g., whole blood). The test zones disposed within a channel of a microfluidic device. The channel is defined by at least one flexible wall and a second wall which may or may not be flexible. Each test zone comprising a probe compound specific for a respective target analyte. The microfluidic device is compressed to reduce the thickness of the channel, which is the distance between the inner surfaces of the walls within the channel. The presence of each analyte is determined by optically detecting an interaction at each of multiple test zones for which the distance between the inner surfaces at the corresponding location is reduced. The interaction at each test zone is indicative of the presence in the sample of a target analyte.
    Type: Application
    Filed: October 4, 2012
    Publication date: June 25, 2015
    Applicant: CLONDIAG GMBH
    Inventors: Thomas Kaiser, Klaus-Peter Möbius, Torsten Schulz, Thomas Uhlig, Alexander Von Schenk Zu Schweinsberg, Eugen Ermantraut, Jens Tuchscheerer
  • Publication number: 20140099731
    Abstract: A method for assaying a sample for each of multiple analytes is described. The method includes contacting an array of spaced-apart test zones with a liquid sample (e.g., whole blood). The test zones disposed within a channel of a microfluidic device. The channel is defined by at least one flexible wall and a second wall which may or may not be flexible. Each test zone comprising a probe compound specific for a respective target analyte. The microfluidic device is compressed to reduce the thickness of the channel, which is the distance between the inner surfaces of the walls within the channel. The presence of each analyte is determined by optically detecting an interaction at each of multiple test zones for which the distance between the inner surfaces at the corresponding location is reduced. The interaction at each test zone is indicative of the presence in the sample of a target analyte.
    Type: Application
    Filed: October 4, 2012
    Publication date: April 10, 2014
    Applicant: CLONDIAG GMBH
    Inventors: Thomas Kaiser, Klaus-Peter Möbius, Torsten Schulz, Thomas Uhlig, Alexander Von Schenk Zu Schweinsberg, Eugen Ermantraut, Jens Tuchscheerer
  • Patent number: 8633013
    Abstract: A method for assaying a sample for each of multiple analytes is described. The method includes contacting an array of spaced-apart test zones with a liquid sample (e.g., whole blood). The test zones disposed within a channel of a microfluidic device. The channel is defined by at least one flexible wall and a second wall which may or may not be flexible. Each test zone comprising a probe compound specific for a respective target analyte. The microfluidic device is compressed to reduce the thickness of the channel, which is the distance between the inner surfaces of the walls within the channel. The presence of each analyte is determined by optically detecting an interaction at each of multiple test zones for which the distance between the inner surfaces at the corresponding location is reduced. The interaction at each test zone is indicative of the presence in the sample of a target analyte.
    Type: Grant
    Filed: May 5, 2008
    Date of Patent: January 21, 2014
    Assignee: Clondiag GmbH
    Inventors: Thomas Kaiser, Klaus-Peter Möbius, Torsten Schulz, Thomas Uhlig, Alexander Von Schenk Zu Schweinsberg, Eugen Ermantraut, Jens Tuchscheerer
  • Patent number: 8349616
    Abstract: A method for assaying a sample for each of multiple analysis is described. The method includes contacting an array of spaced-apart test zones with a liquid sample (e.g., whole blood). The test zones are disposed within a channel of a microfluidic device. The channel is defined by at least one flexible wall and a second wall which may or may not be flexible. Each test zone includes a probe compound specific for a respective target analyte. The microfluidic device is compressed to reduce the thickness of the channel, which is the distance between the inner surfaces of the walls within the channel. The presence of each analyte is determined by optically detecting an interaction at each of multiple zones for which the distance between the inner surfaces at the corresponding location is reduced. The interaction at each test zone is indicative of the presence in the sample of a target analyte.
    Type: Grant
    Filed: November 22, 2007
    Date of Patent: January 8, 2013
    Assignee: Clondiag GmbH
    Inventors: Torsten Schulz, Thomas Kaiser, Thomas Uhlig, Klaus Peter Möbius, Alexander Von Schenk Zu Schweinsberg
  • Publication number: 20100179068
    Abstract: A method for assaying a sample for each of multiple analytes is described. The method includes contacting an array of spaced-apart test zones with a liquid sample (e.g., whole blood). The test zones disposed within a channel of a microfluidic device. The channel is defined by at least one flexible wall and a second wall which may or may not be flexible. Each test zone comprising a probe compound specific for a respective target analyte. The microfluidic device is compressed to reduce the thickness of the channel, which is the distance between the inner surfaces of the walls within the channel. The presence of each analyte is determined by optically detecting an interaction at each of multiple test zones for which the distance between the inner surfaces at the corresponding location is reduced. The interaction at each test zone is indicative of the presence in the sample of a target analyte.
    Type: Application
    Filed: May 5, 2008
    Publication date: July 15, 2010
    Applicant: CLONDIAG GMBH
    Inventors: Thomas Kaiser, Klaus Peter Möbius, Torsten Schulz, Thomas Uhlig, Alexander Von Schenk Zu Schweinsberg, Eugen Ermantraut, Jens Tuchscheerer
  • Patent number: 4858968
    Abstract: A lockring tube joint is described where the end portions of a pair of interfitting tubes are joined by a lockring, wherein the lockring can be installed with less force than prior lockrings and, despite lower installation forces, the tubes are securely held together. The lockring has a front section whose internal surface is tapered, a center section with a cylindrical inner surface of the same diameter as the smallest diameter of the front section, and a rear section forming a push surface for receiving forces to push the ring onto the tubes. The center section is relatively long and thin. As the lockring is pushed onto the interfitting tubes, the front section of the lockring encounters resistance to forward movement, while the center section section of the lockring is longitudinally compressed. The longitudinally compressed center section elastically grows in diameter, which avoids high friction contact with the outermost tube.
    Type: Grant
    Filed: March 17, 1988
    Date of Patent: August 22, 1989
    Inventor: Peter Moebius