Patents by Inventor Peter Roedhammer

Peter Roedhammer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9543108
    Abstract: A rotating x-ray anode has an annular focal track. The surface of the focal track has a directed ground structure. Over the circumference of the annular focal track and over the radial extent of the focal track, the alignment of the ground structure is inclined relative to a tangential reference direction in the respective surface portion in each case by an angle that lies in the range from 15°, including, up to and including 90°. A corresponding method for producing a rotating x-ray anode is described.
    Type: Grant
    Filed: January 7, 2013
    Date of Patent: January 10, 2017
    Assignee: Plansee SE
    Inventors: Peter Roedhammer, Juergen Schatte, Wolfgang Glatz, Thomas Mueller
  • Patent number: 9031202
    Abstract: A rotary anode for a rotary anode X-ray tube has an anode disc with a supporting portion. A focal track is located in the vicinity of an outer diameter of the anode disc. The supporting portion has inhomogeneous material properties along a radial coordinate of the anode disc to provide a high mechanical load capacity in the area of an inner diameter of the anode disc and a high thermal load capacity at the focal track. These measures provide for a rotary anode for a rotary anode X-ray tube that meets the extreme thermal and mechanical loads during operation. Further, a method for manufacturing such a rotary anode is described as well.
    Type: Grant
    Filed: August 10, 2010
    Date of Patent: May 12, 2015
    Assignee: Plansee SE
    Inventors: Ulrich Hove, Zoryana Terletska, Christoph Bathe, Peter Rödhammer, Jürgen Schatte, Wolfgang Glatz, Thomas Müller
  • Publication number: 20150023473
    Abstract: A rotating x-ray anode has an annular focal track. The surface of the focal track has a directed ground structure. Over the circumference of the annular focal track and over the radial extent of the focal track, the alignment of the ground structure is inclined relative to a tangential reference direction in the respective surface portion in each case by an angle that lies in the range from 15°, including, up to and including 90°. A corresponding method for producing a rotating x-ray anode is described.
    Type: Application
    Filed: January 7, 2013
    Publication date: January 22, 2015
    Inventors: Peter Rödhammer, Jürgen Schatte, Wolfgang Glatz, Thomas Müller
  • Patent number: 8243884
    Abstract: An X-ray anode includes a coating and a support body. In addition to a strength-imparting region, the support body has a region formed of a diamond-metal composite material. The diamond-metal composite material is formed of 40 to 90% by volume diamond particles, 10 to 60% by volume binding phase(s) formed of a metal or an alloy of the metals of the group consisting of Cu, Ag, Al and at least one carbide of the elements of the group consisting of Tr, Zr, Hf, V, Nb, Ta, Cr, Mo, W, B, and Si. The highly heat-conductive region can be form-lockingly connected at the back to a heat-dissipating region, for example formed of Cu or a Cu alloy. The X-ray anode has improved heat dissipation and lower composite stress.
    Type: Grant
    Filed: September 25, 2008
    Date of Patent: August 14, 2012
    Assignee: Plansee SE
    Inventors: Peter Rödhammer, Wolfgang Glatz, Bernhard Tabernig, Hannes Wagner
  • Publication number: 20120163549
    Abstract: A rotary anode for a rotary anode X-ray tube has an anode disc with a supporting portion. A focal track is located in the vicinity of an outer diameter of the anode disc. The supporting portion has inhomogeneous material properties along a radial coordinate of the anode disc to provide a high mechanical load capacity in the area of an inner diameter of the anode disc and a high thermal load capacity at the focal track. These measures provide for a rotary anode for a rotary anode X-ray tube that meets the extreme thermal and mechanical loads during operation. Further, a method for manufacturing such a rotary anode is described as well.
    Type: Application
    Filed: August 10, 2010
    Publication date: June 28, 2012
    Applicant: PLANSEE SE
    Inventors: Ulrich Hove, Zoryana Terletska, Christoph Bathe, Peter Rödhammer, Jürgen Schatte, Wolfgang Glatz, Thomas Müller
  • Publication number: 20100316193
    Abstract: An X-ray anode includes a coating and a support body. In addition to a strength-imparting region, the support body has a region formed of a diamond-metal composite material. The diamond-metal composite material is formed of 40 to 90% by volume diamond particles, 10 to 60% by volume binding phase(s) formed of a metal or an alloy of the metals of the group consisting of Cu, Ag, Al and at least one carbide of the elements of the group consisting of Tr, Zr, Hf, V, Nb, Ta, Cr, Mo, W, B, and Si. The highly heat-conductive region can be form-lockingly connected at the back to a heat-dissipating region, for example formed of Cu or a Cu alloy. The X-ray anode has improved heat dissipation and lower composite stress.
    Type: Application
    Filed: September 25, 2008
    Publication date: December 16, 2010
    Applicant: PLANSEE METALL GMBH
    Inventors: Peter Rödhammer, Wolfgang Glatz, Bernhard Tabernig, Hannes Wagner
  • Patent number: 7762448
    Abstract: A composite body which can withstand high thermal stresses is formed by high-temperature soldering at least a part of a high-temperature-resistant, metallic or nonmetallic component and at least a part of a high-temperature-resistant, nonmetallic component. Prior to soldering, a metallic barrier layer, which is impervious to the solder melt, of one or more elements selected from the group consisting of V, Nb, Ta, Cr, Mo, W, Ti, Zr, Hf and alloys thereof, is deposited on that surface of each nonmetallic component which is to be soldered. Solder material, barrier layer and soldering conditions are adapted to one another in such a manner that during the soldering operation the metallic barrier layer remains at least partially in the solid state, so that after the soldering operation it is still present in a thickness of at least 10 ?m at least over the majority of the soldering surface.
    Type: Grant
    Filed: September 29, 2004
    Date of Patent: July 27, 2010
    Assignee: PLansee SE
    Inventor: Peter Rödhammer
  • Publication number: 20070119907
    Abstract: A composite body which can withstand high thermal stresses is formed by high-temperature soldering at least a part of a high-temperature-resistant, metallic or nonmetallic component and at least a part of a high-temperature-resistant, nonmetallic component. Prior to soldering, a metallic barrier layer, which is impervious to the solder melt, of one or more elements selected from the group consisting of V, Nb, Ta, Cr, Mo, W, Ti, Zr, Hf and alloys thereof, is deposited on that surface of each nonmetallic component which is to be soldered. Solder material, barrier layer and soldering conditions are adapted to one another in such a manner that during the soldering operation the metallic barrier layer remains at least partially in the solid state, so that after the soldering operation it is still present in a thickness of at least 10 ?m at least over the majority of the soldering surface.
    Type: Application
    Filed: September 29, 2004
    Publication date: May 31, 2007
    Inventor: Peter Rödhammer
  • Patent number: 6907661
    Abstract: Nonmetallic high-temperature material, such as graphite, CFC or SiC, or components produced from these materials, are joined using the two-stage process. First the structural components are canned and the canning foil is tightly pressed onto the surface contour of the structural components. Then the components are joined to a composite component by forming a material-to-material bond between the metal canning foils. This widens the hitherto highly restricted field of technical application for materials of this type.
    Type: Grant
    Filed: April 30, 2002
    Date of Patent: June 21, 2005
    Assignee: Plansee Aktiengesellschaft
    Inventor: Peter Rödhammer
  • Patent number: 6540130
    Abstract: The invention concerns a process for manufacturing a composite material comprising a matrix component made from one or more metals, or their alloys, chosen from groups IVb to VIb of the Periodic Table, and a strengthening or reinforcing component. According to the invention, the matrix components are processed to form foils, sheets and/or wires and coated with a 1 &mgr;m to 10 &mgr;m thick layer of the strengthening or reinforcing component. A plurality of these coated foils, sheets and/or wires are then combined and permanently joined together by pressure and/or heat.
    Type: Grant
    Filed: March 31, 1999
    Date of Patent: April 1, 2003
    Inventor: Peter Rödhammer