Patents by Inventor Peter Rumfola, III

Peter Rumfola, III has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9006508
    Abstract: A method of removing mercury and/or sulfur from a fluid stream comprising contacting the fluid stream with a sorbent comprising a core and a porous shell formed to include a plurality of pores extending therethrough and communicating with the core. The core comprises a copper compound selected from the group consisting of a basic copper oxysalt, a copper oxide, and a copper sulfide.
    Type: Grant
    Filed: February 6, 2012
    Date of Patent: April 14, 2015
    Assignee: UOP LLC
    Inventors: Vladislav Ivanov Kanazirev, Dante A. Simonetti, Peter Rumfola, III
  • Patent number: 8278242
    Abstract: The hydrothermal stability of transition aluminas used as adsorbents and catalyst carriers is improved through their treatment with a soluble silicon inorganic compound such as sodium silicate wherein the silicon compound is mixed with the alumina powder at the production stage of forming particulates by liquid addition. The silicon containing particulates are activated by heating at a temperature lower than 500° C. and treated, before or after the thermal activation, by a colloidal silica solution to produce a hydrothermally stable, low dust alumina. The total silica content of the final product is typically less than 5 mass-%.
    Type: Grant
    Filed: January 17, 2011
    Date of Patent: October 2, 2012
    Assignee: UOP LLC
    Inventors: Vladislav I. Kanazirev, Peter Rumfola, III
  • Patent number: 7981836
    Abstract: The hydrothermal stability of transition aluminas used as adsorbents and catalyst carriers is improved through their treatment with a soluble silicon inorganic compound such as sodium silicate wherein the silicon compound is mixed with the alumina powder at the production stage of forming particulates by liquid addition. The silicon containing particulates are activated by heating at a temperature lower than 500° C. and treated, before or after the thermal activation, by a colloidal silica solution to produce a hydrothermally stable, low dust alumina. The total silica content of the final product is typically less than 5 mass-%.
    Type: Grant
    Filed: May 24, 2006
    Date of Patent: July 19, 2011
    Assignee: UOP LLC
    Inventors: Vladislav I. Kanazirev, Peter Rumfola, III
  • Publication number: 20110111955
    Abstract: The hydrothermal stability of transition aluminas used as adsorbents and catalyst carriers is improved through their treatment with a soluble silicon inorganic compound such as sodium silicate wherein the silicon compound is mixed with the alumina powder at the production stage of forming particulates by liquid addition. The silicon containing particulates are activated by heating at a temperature lower than 500° C. and treated, before or after the thermal activation, by a colloidal silica solution to produce a hydrothermally stable, low dust alumina. The total silica content of the final product is typically less than 5 mass-%.
    Type: Application
    Filed: January 17, 2011
    Publication date: May 12, 2011
    Applicant: UOP LLC
    Inventors: Vladislav I. Kanazirev, Peter Rumfola, III
  • Patent number: 7906088
    Abstract: Mixing small amounts of an inorganic halide, such as NaCl, to basic copper carbonate followed by calcination at a temperature sufficient to decompose the carbonate results in a significant improvement in resistance to reduction of the resulting copper oxide. The introduction of the halide can be also achieved during the precipitation of the carbonate precursor. These reduction resistant copper oxides can be in the form of composites with alumina and are especially useful for purification of gas or liquid streams containing hydrogen or other reducing agents. These reduction resistant copper oxides can function at near ambient temperatures.
    Type: Grant
    Filed: August 26, 2009
    Date of Patent: March 15, 2011
    Assignee: UOP LLC
    Inventors: Vladislav I. Kanazirev, Peter Rumfola, III
  • Publication number: 20100222215
    Abstract: A composite sorbent is formed which is the reaction product of a solid alkali metal carbonate, rehydratable alumina and water or an aqueous solution of a metal salt. The reaction between the components occurs while forming particulates followed by curing and activation at high temperatures. The alkali metal in the sorbent exhibits a highly reactive and accessible state that is very favorable for various sorption applications. The sorbent is especially useful for removal of HCl and other acid contaminants from gas and liquid hydrocarbon streams at high temperatures.
    Type: Application
    Filed: May 11, 2010
    Publication date: September 2, 2010
  • Publication number: 20100075846
    Abstract: The hydrothermal stability of transition aluminas used as adsorbents and catalyst carriers is improved through their treatment with a soluble silicon inorganic compound such as sodium silicate wherein the silicon compound is mixed with the alumina powder at the production stage of forming particulates by liquid addition. The silicon containing particulates are activated by heating at a temperature lower than 500° C. and treated, before or after the thermal activation, by a colloidal silica solution to produce a hydrothermally stable, low dust alumina. The total silica content of the final product is typically less than 5 mass-%.
    Type: Application
    Filed: November 17, 2009
    Publication date: March 25, 2010
    Applicant: UOP LLC
    Inventors: Vladislav I. Kanazirev, Peter Rumfola, III
  • Publication number: 20100012578
    Abstract: Mixing small amounts of an inorganic halide, such as NaCl, to basic copper carbonate followed by calcination at a temperature sufficient to decompose the carbonate results in a significant improvement in resistance to reduction of the resulting copper oxide. The introduction of the halide can be also achieved during the precipitation of the carbonate precursor. These reduction resistant copper oxides can be in the form of composites with alumina and are especially useful for purification of gas or liquid streams containing hydrogen or other reducing agents. These reduction resistant copper oxides can function at near ambient temperatures.
    Type: Application
    Filed: August 26, 2009
    Publication date: January 21, 2010
    Applicant: UOP LLC
    Inventors: Vladislav I. Kanazirev, Peter Rumfola, III
  • Patent number: 6736882
    Abstract: A method is provided for production of low dust adsorbents and catalysts. A thin layer of metal oxide derived from a colloidal solution of the oxide is deposited on the adsorbent or catalyst particle, which greatly improves the physical properties of the particle with regards to attrition and dust formation while retaining the adsorbent and catalytic properties of the particle. The method is applicable to a variety of porous refractory oxides. For example, treatment with colloidal silica improves greatly the physical stability of alumina adsorbents.
    Type: Grant
    Filed: August 26, 2002
    Date of Patent: May 18, 2004
    Assignee: UOP LLC
    Inventors: Vladislav I. Kanazirev, Alan P. Cohen, Peter Rumfola, III