Patents by Inventor Peter S. Martin

Peter S. Martin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230235104
    Abstract: Embodiments of polyethylene compositions and articles comprising polyethylene compositions are disclosed. The polyethylene compositions may include a first polyethylene fraction area defined by an area in the elution profile in a temperature range of 70° C. to 97° C. via improved comonomer composition distribution (iCCD) analysis method; a first peak in the temperature range of 70° C. to 97° C. in the elution profile; a second polyethylene fraction area defined by an area in the elution profile in a temperature range of 97° C. to 110° C.; and a second peak in the temperature range of 97° C. to 110° C. The polyethylene composition may have a density of 0.935 g/cm3 to 0.955 g/cm3 and a melt index (I2) of 1.0 g/10 minutes to 10.0 g/10 minutes. A ratio of the first polyethylene fraction area to the second polyethylene fraction area may be less than 2.0.
    Type: Application
    Filed: February 5, 2021
    Publication date: July 27, 2023
    Applicant: Dow Global Technologies LLC
    Inventors: Elva L. Lugo, Sanjib Biswas, Russell Cooper, Rajen Patel, Peter S. Martin, Stephanie M. Whited
  • Patent number: 11685798
    Abstract: In various embodiments, a polyethylene formulation has a density of greater than 0.940 g/cm3 when measured according to ASTM D792, and a high load melt index (I21) of 1.0 g/10 min to 10.0 g/10 min when measured according to ASTM D1238 at 190° C. and a 21.6 kg load. Moreover, the polyethylene formulation has a peak molecular weight (Mp(GPC)) of less than 50,000 g/mol, a number average molecular weight (Mn(GPC)) of less than 30,000 g/mol, and a weight fraction (w1) of molecular weight (MW) less than 10,000 g/mol of less than or equal to 10.5 wt %, as determined by Gel Permeation Chromatography (GPC). Articles made from the polyethylene formulation, such as articles made by blow molding processes are also provided.
    Type: Grant
    Filed: July 18, 2019
    Date of Patent: June 27, 2023
    Assignee: Dow Global Technologies LLC
    Inventors: Peter S. Martin, Yijian Lin, Angela I. Padilla-Acevedo, Roger L. Kuhlman, Shadid Askar, Mridula Kapur, Todd A. Hogan, Joel D. Wieliczko, Chuan C. He
  • Publication number: 20220169762
    Abstract: A bimodal poly(ethylene-co-1-alkene) copolymer comprising a higher molecular weight poly(ethylene-co-1-alkene) copolymer component and a lower molecular weight poly(ethylene-co-1-alkene) copolymer component. The copolymer is characterized by a unique combination of features comprising, or reflected in, its density; molecular weight distributions; component weight fraction amount; viscoelastic properties; and environmental stress-cracking resistance. Additional inventive embodiments include a method of making the copolymer, a formulation comprising the copolymer and at least one additive that is different than the copolymer, a method of making a manufactured article from the copolymer or formulation; the manufactured article made thereby, and use of the manufactured article.
    Type: Application
    Filed: April 28, 2020
    Publication date: June 2, 2022
    Inventors: Shadid Askar, Peter S. Martin, Bo Liu, John F. Szul, Roger L. Kuhlman, Mridula Babli Kapur
  • Publication number: 20220162358
    Abstract: A bimodal poly(ethylene-co-1-alkene) copolymer comprising a higher molecular weight poly(ethylene-co-1-alkene) copolymer component and a lower molecular weight poly(ethylene-co-1-alkene) copolymer component. The copolymer is characterized by a unique combination of features comprising, or reflected in, its density; molecular weight distributions; component weight fraction amount; and viscoelastic properties; and at least one of environmental stress-cracking resistance and resin swell. Additional inventive embodiments include a method of making the copolymer, a formulation comprising the copolymer and at least one additive that is different than the copolymer, a method of making a manufactured article from the copolymer or formulation; the manufactured article made thereby, and use of the manufactured article.
    Type: Application
    Filed: April 28, 2020
    Publication date: May 26, 2022
    Inventors: Shadid Askar, Peter S. Martin, Bo Liu, John F. Szul, Roger L. Kuhlman, Mridula Babli Kapur
  • Patent number: 11254848
    Abstract: The present disclosure provides compositions, films and articles containing a random propylene/ethylene copolymer and a substituted phenylene aromatic diester. Polymerization with an improved catalyst system increases the amount of ethylene incorporated into the random propylene/ethylene copolymer backbone which results in improved thermal properties, improved optical properties, and improved heat seal properties.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: February 22, 2022
    Assignee: W.R. GRACE & CO.-CONN.
    Inventors: Li-Min Tau, Chai-Jing Chou, John Kaarto, Peter S. Martin, William G. Sheard
  • Patent number: 11208512
    Abstract: A high density, high polydispersity polyethylene having improved properties, and a process of producing same.
    Type: Grant
    Filed: January 12, 2018
    Date of Patent: December 28, 2021
    Assignee: Univation Technologies, LLC
    Inventors: Peter S. Martin, John F. Szul, Roger L. Kuhlman, Mahsa McDougal, C. Jeff Harlan, Timothy M. Boller
  • Patent number: 11142600
    Abstract: An ethylene/1-hexene copolymer has a density from 0.9541 to 0.9600 gram per cubic centimeter (g/cm3), a molecular mass dispersity (DM=Mw/Mn) from greater than 2.0 to 3.5; and a Z-average molecular weight (Mz) from 120,000 to 240,000 grams per mole (g/mol). Methods of making and using same. Articles containing same.
    Type: Grant
    Filed: March 11, 2019
    Date of Patent: October 12, 2021
    Assignee: Univation Technologies, LLC
    Inventors: Swapnil B. Chandak, Peter S. Martin, Yi Zhang
  • Publication number: 20210301049
    Abstract: In various embodiments, a polyethylene formulation has a density of greater than 0.940 g/cm3 when measured according to ASTM D792, and a high load melt index (I21) of 1.0 g/10 min to 10.0 g/10 min when measured according to ASTM D1238 at 190° C. and a 21.6 kg load. Moreover, the polyethylene formulation has a peak molecular weight (Mp(GPC)) of less than 50,000 g/mol, a number average molecular weight (Mn(GPC)) of less than 30,000 g/mol, and a weight fraction (w1) of molecular weight (MW) less than 10,000 g/mol of less than or equal to 10.5 wt %, as determined by Gel Permeation Chromatography (GPC). Articles made from the polyethylene formulation, such as articles made by blow molding processes are also provided.
    Type: Application
    Filed: July 18, 2019
    Publication date: September 30, 2021
    Applicant: Dow Global Technologies LLC
    Inventors: Peter S. Martin, Yijian Lin, Angela I. Padilla-Acevedo, Roger L. Kuhlman, Shadid Askar, Mridula Kapur, Todd A. Hogan, Joel D. Wieliczko, Chuan C. He
  • Publication number: 20200399407
    Abstract: An ethylene/1-hexene copolymer has a density from 0.9541 to 0.9600 gram per cubic centimeter (g/cm3), a molecular mass dispersity (ÐM=Mw/Mn) from greater than 2.0 to 3.5; and a Z-average molecular weight (Mz) from 120,000 to 240,000 grams per mole (g/mol). Methods of making and using same. Articles containing same.
    Type: Application
    Filed: March 11, 2019
    Publication date: December 24, 2020
    Inventors: Swapnil B. Chandak, Peter S. Martin, Yi Zhang
  • Publication number: 20200048384
    Abstract: A high density, high polydispersity polyethylene having improved properties, and a process of producing same.
    Type: Application
    Filed: January 12, 2018
    Publication date: February 13, 2020
    Applicant: Univation Technologies, LLC
    Inventors: Peter S. Martin, John F. Szul, Roger L. Kuhlman, Mahsa McDougal, C. Jeff Harlan, Timothy M. Boller
  • Patent number: 9963528
    Abstract: Methods of making polyethylene resins are provided. More particularly methods of modifying the melt flow ratio and swell characteristics of polyethylene resins are provided.
    Type: Grant
    Filed: April 9, 2015
    Date of Patent: May 8, 2018
    Assignee: Univation Technologies, LLC
    Inventors: R. Eric Pequeno, Bruce J. Savatsky, Peter S. Martin, Timothy R. Lynn
  • Publication number: 20170137551
    Abstract: Methods of making polyethylene resins are provided. More particularly methods of modifying the melt flow ratio and swell characteristics of polyethylene resins are provided.
    Type: Application
    Filed: April 9, 2015
    Publication date: May 18, 2017
    Applicant: Univation Technologies, LLC
    Inventors: R. Eric PEQUENO, Bruce J. SAVATSKY, Peter S. MARTIN, Timothy R. LYNN
  • Publication number: 20170129977
    Abstract: Polyethylene resins having variable swell and excellent physical properties are provided. The polyethylene resins may be advantageously prepared using a single catalyst system.
    Type: Application
    Filed: April 9, 2015
    Publication date: May 11, 2017
    Applicant: Univation Technologies, LLC
    Inventors: Peter S. Martin, Juliet Bauer Wagner, Timothy R. Lynn, R. Eric Pequeno
  • Patent number: 8871868
    Abstract: Propylene impact copolymers (ICPs) are provided which comprise: (a) a matrix phase which comprises from 60 to 95 weight % of a polypropylene polymer containing from 0 to 6 mole % of units derived from one or more alpha-olefins other than propylene, and (b) a dispersed phase which comprises from 5 to 40 weight % of a copolymer derived from a first comonomer which can be either propylene or ethylene together with a second alpha-olefin comonomer. The ICP is further characterized by having a beta/alpha ratio less than or equal to 1.1. The ICPs of the present invention are particularly well suited for applications requiring clear, tough polymers such as thin walled injection molded articles for frozen food packaging applications.
    Type: Grant
    Filed: January 9, 2013
    Date of Patent: October 28, 2014
    Assignee: Braskem America, Inc.
    Inventors: Peter S. Dias, Jonathan D. Kersey, Peter S. Martin, Thomas R. Cuthbert
  • Publication number: 20140194577
    Abstract: Propylene impact copolymers (ICPs) are provided which comprise: (a) a matrix phase which comprises from 60 to 95 weight % of a polypropylene polymer containing from 0 to 6 mole % of units derived from one or more alpha-olefins other than propylene, and (b) a dispersed phase which comprises from 5 to 40 weight % of a copolymer derived from a first comonomer which can be either propylene or ethylene together with a second alpha-olefin comonomer. The ICP is further characterized by having a beta/alpha ratio less than or equal to 1.1. The ICPs of the present invention are particularly well suited for applications requiring clear, tough polymers such as thin walled injection molded articles for frozen food packaging applications.
    Type: Application
    Filed: January 9, 2013
    Publication date: July 10, 2014
    Applicant: BRASKEM AMERICA, INC.
    Inventors: Peter S. Dias, Jonathan D. Kersey, Peter S. Martin, Thomas R. Cuthbert
  • Patent number: 8748539
    Abstract: Propylene impact copolymers (ICPs) are provided which comprise: (a) a matrix phase which comprises from 60 to 95 weight % of a polypropylene polymer containing from 0 to 6 mole % of units derived from one or more alpha-olefins other than propylene, and (b) a dispersed phase which comprises from 5 to 40 weight % of a copolymer derived from a first comonomer which can be either propylene or ethylene together with a second alpha-olefin comonomer. The ICP is further characterized by having a beta/alpha ratio less than or equal to 1.1. The ICPs of the present invention are particularly well suited for applications requiring clear, tough polymers such as thin walled injection molded articles for frozen food packaging applications.
    Type: Grant
    Filed: May 24, 2011
    Date of Patent: June 10, 2014
    Assignee: Braskem America, Inc.
    Inventors: Peter S. Martin, Peter S. Dias, Jason C. Brodil, Li-Min Tau, Debra R. Wilson, Jeffrey D. Goad, Matthew J. Fedec
  • Publication number: 20140124405
    Abstract: The present disclosure provides compositions, films and articles containing a random propylene/ethylene copolymer and a substituted phenylene aromatic diester. Polymerization with an improved catalyst system increases the amount of ethylene incorporated into the random propylene/ethylene copolymer backbone which results in improved thermal properties, improved optical properties, and improved heat seal properties.
    Type: Application
    Filed: July 27, 2012
    Publication date: May 8, 2014
    Applicant: Dow Global Technologies LLC
    Inventors: Li-Min Tau, Chai-Jing Chou, John Kaarto, Peter S. Martin, William G. Sheard
  • Patent number: 8609231
    Abstract: The present invention generally relates to composite laminates and uses thereof in articles in need of protection from mechanical damage and water or oxygen based degradation.
    Type: Grant
    Filed: December 8, 2010
    Date of Patent: December 17, 2013
    Assignee: Dow Global Technologies LLC
    Inventors: Shaofu Wu, Peter S. Martin, Xuming Chen, Michelle L. Boven, Weijun Zhou, Valentina A. Kuznetsova
  • Patent number: 8450447
    Abstract: Polyesteramides prepared from decreased perfection diamide diester monomers. The polymers exhibit improved physical properties.
    Type: Grant
    Filed: March 13, 2008
    Date of Patent: May 28, 2013
    Inventors: William J. Harris, Peter S. Martin, Jerry E. White, Rene Broos
  • Publication number: 20120302701
    Abstract: Propylene impact copolymers (ICPs) are provided which comprise: (a) a matrix phase which comprises from 60 to 95 weight % of a polypropylene polymer containing from 0 to 6 mole % of units derived from one or more alpha-olefins other than propylene, and (b) a dispersed phase which comprises from 5 to 40 weight % of a copolymer derived from a first comonomer which can be either propylene or ethylene together with a second alpha-olefin comonomer. The ICP is further characterized by having a beta/alpha ratio less than or equal to 1.1. The ICPs of the present invention are particularly well suited for applications requiring clear, tough polymers such as thin walled injection molded articles for frozen food packaging applications.
    Type: Application
    Filed: May 24, 2011
    Publication date: November 29, 2012
    Applicant: Dow Global Technologies LLC
    Inventors: Peter S. Martin, Peter S. Dias, Jason C. Brodil, Li-Min Tau, Debra R. Wilson, Jeffrey D. Goad, Matthew J. Fedec