Patents by Inventor Peter Seipel

Peter Seipel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9779854
    Abstract: The present invention relates to a novel method for producing metallic semifinished products by extrusion, to the thus obtainable semifinished products and to contact pieces that can be produced therefrom.
    Type: Grant
    Filed: August 24, 2012
    Date of Patent: October 3, 2017
    Assignee: UMICORE AG & CO. KG
    Inventors: Andreas Schmidt, Werner Roth, Alexander Schade, Peter Seipel
  • Publication number: 20140356646
    Abstract: The present invention relates to a novel method for producing metallic semifinished products by extrusion, to the thus obtainable semifinished products and to contact pieces that can be produced therefrom.
    Type: Application
    Filed: August 24, 2012
    Publication date: December 4, 2014
    Applicant: UMICORE AG & CO. KG
    Inventors: Andreas Schmidt, Werner Roth, Alexander Schade, Peter Seipel
  • Patent number: 8394551
    Abstract: The invention relates to a membrane-electrode assembly (MEA) for electrochemical devices, in particular for membrane fuel cells. The membrane-electrode assembly has a semi-coextensive design and comprises an ion-conducting membrane, two catalyst layers and gas diffusion layers of differing sizes on the front side and rear side. The first gas diffusion layer has smaller planar dimensions than the ion-conducting membrane, while the second gas diffusion layer has essentially the same planar dimensions as the ion-conducting membrane. As a result, the ion-conducting membrane has a surface which is not supported by a gas diffusion layer on the front side. The membrane-electrode assembly has, owing to the particular construction, a stable structure which can be handled readily and displays advantages in the sealing of the reactive gases from one another and also in terms of the electrical properties. In particular, the hydrogen penetration current is significantly reduced.
    Type: Grant
    Filed: July 14, 2004
    Date of Patent: March 12, 2013
    Assignee: Umicore AG & Co. KG
    Inventors: Ralf Zuber, Sandra Wittpahl, Klaus Schaack, Holger Dziallas, Peter Seipel, Günther Vulpius, Bernd Dillmann
  • Patent number: 8361674
    Abstract: The invention relates to the field of electrochemical cells and fuel cells, more specifically to polymer-electrolyte-membrane fuel cells (PEMFC) and direct methanol fuel cells (DMFC). A multi-layer membrane-electrode-assembly (ML-MEA) comprising two electrically conductive bipolar plates and a membrane-electrode-assembly (MEA) bonded together by means of an electrically insulating adhesive material is disclosed. The adhesive material, preferably a polyurethane-based system, is in direct contact with the protective film layers attached to front side and the back side of the MEA, thus contamination of the ionomer membrane and/or the electrode layers with adhesive components is avoided. Multi-layer MEAs with improved long term stability and life time are obtained. The products are used for the manufacture of low temperature PEMFC and DMFC stacks.
    Type: Grant
    Filed: April 12, 2005
    Date of Patent: January 29, 2013
    Assignee: Umicore AG & Co. KG
    Inventors: Ralf Zuber, Knut Fehl, Peter Seipel, Sven Bornbaum
  • Patent number: 8343321
    Abstract: The invention relates to membrane-electrode assemblies for the electrolysis of water (electrolysis MEAs), which contain an ion-conducting membrane having a front and rear side; a first catalyst layer on the front side; a first gas diffusion layer on the front side; a second catalyst layer on the rear side, and a second gas diffusion layer on the rear side. The first gas diffusion layer has smaller planar dimensions than the ion-conducting membrane, whereas the second gas diffusion layer has essentially the same planar dimensions as the ion-conducting membrane (“semi-coextensive design”). The MEAs also comprise an unsupported free membrane surface that yields improved adhesion properties of the sealing material. The invention also relates to a method for producing the MEA products. Pressure-resistant, gastight and cost-effective membrane-electrode assemblies are obtained, that are used in PEM water electrolyzers, regenerative fuel cells or in other electrochemical devices.
    Type: Grant
    Filed: July 13, 2011
    Date of Patent: January 1, 2013
    Assignee: Umicore AG & Co. KG
    Inventors: Ralf Zuber, Klaus Schaack, Sandra Wittpahl, Holger Dziallas, Peter Seipel, Pia Braun, Lutz Rohland
  • Publication number: 20120012457
    Abstract: The invention relates to membrane-electrode assemblies for the electrolysis of water (electrolysis MEAs), which contain an ion-conducting membrane having a front and rear side; a first catalyst layer on the front side; a first gas diffusion layer on the front side; a second catalyst layer on the rear side, and a second gas diffusion layer on the rear side. The first gas diffusion layer has smaller planar dimensions than the ion-conducting membrane, whereas the second gas diffusion layer has essentially the same planar dimensions as the ion-conducting membrane (“semi-coextensive design”). The MEAs also comprise an unsupported free membrane surface that yields improved adhesion properties of the sealing material. The invention also relates to a method for producing the MEA products. Pressure-resistant, gastight and cost-effective membrane-electrode assemblies are obtained, that are used in PEM water electrolyzers, regenerative fuel cells or in other electrochemical devices.
    Type: Application
    Filed: July 13, 2011
    Publication date: January 19, 2012
    Applicant: UMICORE AG & CO. KG
    Inventors: Ralf ZUBER, Sandra WITTPAHL, Klaus SCHAACK, Holger DZIALLAS, Peter SEIPEL, Pia BRAUN, Lutz ROHLAND
  • Patent number: 7993499
    Abstract: The invention relates to membrane-electrode assemblies for the electrolysis of water (electrolysis MEAs), which contain an ion-conducting membrane having a front and rear side; a first catalyst layer on the front side; a first gas diffusion layer on the front side; a second catalyst layer on the rear side, and a second gas diffusion layer on the rear side. The first gas diffusion layer has smaller planar dimensions than the ion-conducting membrane, whereas the second gas diffusion layer has essentially the same planar dimensions as the ion-conducting membrane (“semi-coextensive design”). The MEAs also comprise an unsupported free membrane surface that yields improved adhesion properties of the sealing material. The invention also relates to a method for producing the MEA products. Pressure-resistant, gastight and cost-effective membrane-electrode assemblies are obtained, that are used in PEM water electrolyzers, regenerative fuel cells or in other electrochemical devices.
    Type: Grant
    Filed: July 14, 2004
    Date of Patent: August 9, 2011
    Assignee: Umicore AG & Co. KG
    Inventors: Ralf Zuber, Klaus Schaack, Sandra Wittpahl, Holger Dziallas, Peter Seipel, Pia Braun, Lutz Rohland
  • Publication number: 20080067061
    Abstract: The invention relates to membrane-electrode assemblies for the electrolysis of water (electrolysis MEAs), which contain an ion-conducting membrane having a front and rear side; a first catalyst layer on the front side; a first gas diffusion layer on the front side; a second catalyst layer on the rear side, and a second gas diffusion layer on the rear side. The first gas diffusion layer has smaller planar dimensions than the ion-conducting membrane, whereas the second gas diffusion layer has essentially the same planar dimensions as the ion-conducting membrane (“semi-coextensive design”). The MEAs also comprise an unsupported free membrane surface that yields improved adhesion properties of the sealing material. The invention also relates to a method for producing the MEA products. Pressure-resistant, gastight and cost-effective membrane-electrode assemblies are obtained, that are used in PEM water electrolyzers, regenerative fuel cells or in other electrochemical devices.
    Type: Application
    Filed: July 14, 2004
    Publication date: March 20, 2008
    Applicant: UMICORE AG & CO. KG
    Inventors: Ralf Zuber, Sandra Wittpahl, Klaus Schaack, Holger Dziallas, Peter Seipel, Pia Braun, Lutz Rohland
  • Patent number: 7285307
    Abstract: The present invention provides a continuous process for producing catalyst-coated polymeric electrolyte membranes and membrane electrode assemblies for fuel cells. The process of the invention uses an ionomer membrane having a polymeric backing film on the back side. After the first coating step, the membrane is dried, during which the residual solvent may be almost completely removed. After this, the polymeric backing film is removed and the back side of the membrane is coated in a second step. The front and back sides of the membrane can be coated by various methods, such as screen printing or stencil printing. Two gas distribution layers are applied to the two sides of the catalyst-coated membrane to produce a 5-layer membrane electrode assembly. The membrane electrode assemblies are used in polymeric electrolyte membrane fuel cells and in direct methanol fuel cells.
    Type: Grant
    Filed: February 26, 2003
    Date of Patent: October 23, 2007
    Assignee: Umicore AG & Co KG
    Inventors: Claus-Rupert Hohenthanner, Franz Greinemann, Peter Seipel
  • Publication number: 20070231689
    Abstract: The invention relates to the field of electrochemical cells and fuel cells, more specifically to polymer-electrolyte-membrane fuel cells (PEMFC) and direct methanol fuel cells (DMFC). A multi-layer membrane-electrode-assembly (ML-MEA) comprising two electrically conductive bipolar plates and a membrane-electrode-assembly (MEA) bonded together by means of an electrically insulating adhesive material is disclosed. The adhesive material, preferably a polyurethane-based system, is in direct contact with the protective film layers attached to front side and the back side of the MEA, thus contamination of the ionomer membrane and/or the electrode layers with adhesive components is avoided. Multi-layer MEAs with improved long term stability and life time are obtained. The products are used for the manufacture of low temperature PEMFC and DMFC stacks.
    Type: Application
    Filed: April 12, 2005
    Publication date: October 4, 2007
    Applicant: UMICORE AG & CO KG
    Inventors: Ralf Zuber, Knut Fehl, Peter Seipel, Sven Bornbaum
  • Publication number: 20070215461
    Abstract: The invention relates to a membrane-electrode assembly (MEA) for electrochemical devices, in particular for membrane fuel cells. The membrane-electrode assembly has a semi-coextensive design and comprises an ion-conducting membrane, two catalyst layers and gas diffusion layers of differing sizes on the front side and rear side. The first gas diffusion layer has smaller planar dimensions than the ion-conducting membrane, while the second gas diffusion layer has essentially the same planar dimensions as the ion-conducting membrane. As a result, the ion-conducting membrane has a surface which is not supported by a gas diffusion layer on the front side. The membrane-electrode assembly has, owing to the particular construction, a stable structure which can be handled readily and displays advantages in the sealing of the reactive gases from one another and also in terms of the electrical properties. In particular, the hydrogen penetration current is significantly reduced.
    Type: Application
    Filed: July 14, 2004
    Publication date: September 20, 2007
    Inventors: Ralf Zuber, Sandra Wittpahl, Klaus Schaack, Holger Dziallas, Peter Seipel, Gunther Vulpius, Bernd Dillmann
  • Publication number: 20070077350
    Abstract: The present invention relates to a process for manufacture of a catalyst-coated polymer electrolyte membrane (CCM) for electrochemical devices. The process is characterized in that a polymer electrolyte membrane is used which is supported on its backside to a first supporting foil. After coating of the front side, a second supporting foil is applied to the front side, the first supporting foil is removed and subsequently the second catalyst layer is applied to the back side. In this process, the membrane is in contact with at least one supporting foil during all processing steps. Smooth, wrinkle-free catalyst-coated membranes are obtained in a continuous process with high production speed. The 3-layer catalyst-coated membranes (CCMs) are used in electrochemical devices, such as PEM fuel cells, direct methanol fuel cells (DMFC), sensors or electrolyzers.
    Type: Application
    Filed: June 24, 2004
    Publication date: April 5, 2007
    Inventors: Claus-Rupert Hohenthanner, Heike Kuhnhold, Bernhardt Barth, Peter Seipel
  • Publication number: 20050014056
    Abstract: The invention concerns a membrane electrode unit (MEU) for electrochemical equipment, especially for membrane fuel cells. The membrane electrode unit has a “semi-coextensive” design and contains an ionically conductive membrane, two catalyst layers, and gas distributor substrates of different sizes on the front and back sides. The first gas distributor substrate has smaller surface dimensions than the ionically conductive membrane, while the second gas distributor substrate has the same area as the ionically conductive membrane. The membrane electrode unit has, because of its special design, a stable structure that can be handled well, and which exhibits advantages for sealing the reactive gases off from each other and in its electrical properties. In particular, the hydrogen penetration current is distinctly reduced. The membrane electrode unit is used in PEM fuel cells, direct methanol fuel cells, electrolyzers, and other electrochemical equipment.
    Type: Application
    Filed: October 30, 2003
    Publication date: January 20, 2005
    Inventors: Ralf Zuber, Klaus Schaack, Sandra Wittpahl, Holger Dziallas, Peter Seipel
  • Publication number: 20040124091
    Abstract: The present invention provides a continuous process for producing catalyst-coated polymeric electrolyte membranes and membrane electrode assemblies for fuel cells. The process of the invention uses an ionomer membrane having a polymeric backing film on the back side. After the first coating step, the membrane is dried, during which the residual solvent may be almost completely removed. After this, the polymeric backing film is removed and the back side of the membrane is coated in a second step. The front and back sides of the membrane can be coated by various methods, such as screen printing or stencil printing. Two gas distribution layers are applied to the two sides of the catalyst-coated membrane to produce a 5-layer membrane electrode assembly. The membrane electrode assemblies are used in polymeric electrolyte membrane fuel cells and in direct methanol fuel cells.
    Type: Application
    Filed: February 26, 2003
    Publication date: July 1, 2004
    Applicant: OMG AG & co. KG
    Inventors: Claus-Rupert Hohenthanner, Franz Greinemann, Peter Seipel