Patents by Inventor Peter Tuerkes

Peter Tuerkes has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11276680
    Abstract: A temperature protected power semiconductor device has a substrate which includes a power field effect transistor (FET) and a thermosensitive element. The power FET has a gate electrode connected to a gate, a drift region, and first and second terminals for a load current. The load current is controllable during operation by a voltage applied between the gate and the first terminal. The thermosensitive element has a first contact connected to one of the gate electrode and first terminal of the power FET, and a second contact connected to the other one of the gate electrode and first terminal. The thermosensitive element is located close to the power FET and thermally coupled thereto. The thermosensitive element is configured to cause the power FET to reduce the load current in case of an exceedance of a limit temperature of the power FET, by interconnecting the gate and first terminal.
    Type: Grant
    Filed: October 22, 2015
    Date of Patent: March 15, 2022
    Assignee: Infineon Technologies Austria AG
    Inventors: Daniel Pedone, Hans-Joachim Schulze, Rolf Gerlach, Christian Kasztelan, Anton Mauder, Hubert Rothleitner, Wolfgang Scholz, Philipp Seng, Peter Tuerkes
  • Patent number: 9825023
    Abstract: An embodiment of an IGBT comprises an emitter terminal at a first surface of a semiconductor body. The IGBT further comprises a collector terminal at a second surface of the semiconductor body. A first zone of a first conductivity type is in the semiconductor body between the first and second surfaces. A collector injection structure adjoins the second surface, the collector injection structure being of a second conductivity type and comprising a first part and a second part at a first lateral distance from each other. The IGBT further comprises a negative temperature coefficient thermistor adjoining the first zone in an area between the first and second parts.
    Type: Grant
    Filed: October 12, 2015
    Date of Patent: November 21, 2017
    Assignee: Infineon Technologies Austria AG
    Inventors: Thomas Basler, Erich Griebl, Joachim Mahler, Daniel Pedone, Wolfgang Scholz, Philipp Seng, Peter Tuerkes, Stephan Voss
  • Patent number: 9548370
    Abstract: A transistor device includes an individual transistor cell arranged in a transistor cell field on a semiconductor body, the individual transistor cell having a gate electrode. The transistor device further includes a gate contact, electrically coupled to the gate electrode and configured to switch on the individual transistor cell by providing a gate current in a first direction and configured to switch off the individual transistor cell by providing a gate current in a second direction, the second direction being opposite to the first direction. The transistor device also includes a gate-resistor structure monolithically integrated in the transistor device. The gate-resistor structure provides a first resistance for the gate current when the gate current flows in the first direction, and provides a second resistance for the gate current, which is different from the first resistance, when the gate current flows in the second direction.
    Type: Grant
    Filed: April 21, 2015
    Date of Patent: January 17, 2017
    Assignee: Infineon Technologies AG
    Inventors: Stephan Voss, Peter Tuerkes, Holger Huesken
  • Publication number: 20160133620
    Abstract: A temperature protected power semiconductor device has a substrate which includes a power field effect transistor (FET) and a thermosensitive element. The power FET has a gate electrode connected to a gate, a drift region, and first and second terminals for a load current. The load current is controllable during operation by a voltage applied between the gate and the first terminal. The thermosensitive element has a first contact connected to one of the gate electrode and first terminal of the power FET, and a second contact connected to the other one of the gate electrode and first terminal. The thermosensitive element is located close to the power FET and thermally coupled thereto. The thermosensitive element is configured to cause the power FET to reduce the load current in case of an exceedance of a limit temperature of the power FET, by interconnecting the gate and first terminal.
    Type: Application
    Filed: October 22, 2015
    Publication date: May 12, 2016
    Inventors: Daniel Pedone, Hans-Joachim Schulze, Rolf Gerlach, Christian Kasztelan, Anton Mauder, Hubert Rothleitner, Wolfgang Scholz, Philipp Seng, Peter Tuerkes
  • Publication number: 20160111415
    Abstract: An embodiment of an IGBT comprises an emitter terminal at a first surface of a semiconductor body. The IGBT further comprises a collector terminal at a second surface of the semiconductor body. A first zone of a first conductivity type is in the semiconductor body between the first and second surfaces. A collector injection structure adjoins the second surface, the collector injection structure being of a second conductivity type and comprising a first part and a second part at a first lateral distance from each other. The IGBT further comprises a negative temperature coefficient thermistor adjoining the first zone in an area between the first and second parts.
    Type: Application
    Filed: October 12, 2015
    Publication date: April 21, 2016
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Thomas Basler, Erich Griebl, Joachim Mahler, Daniel Pedone, Wolfgang Scholz, Philipp Seng, Peter Tuerkes, Stephan Voss
  • Publication number: 20150228744
    Abstract: A transistor device includes an individual transistor cell arranged in a transistor cell field on a semiconductor body, the individual transistor cell having a gate electrode. The transistor device further includes a gate contact, electrically coupled to the gate electrode and configured to switch on the individual transistor cell by providing a gate current in a first direction and configured to switch off the individual transistor cell by providing a gate current in a second direction, the second direction being opposite to the first direction. The transistor device also includes a gate-resistor structure monolithically integrated in the transistor device. The gate-resistor structure provides a first resistance for the gate current when the gate current flows in the first direction, and provides a second resistance for the gate current, which is different from the first resistance, when the gate current flows in the second direction.
    Type: Application
    Filed: April 21, 2015
    Publication date: August 13, 2015
    Inventors: Stephan Voss, Peter Tuerkes, Holger Huesken
  • Patent number: 9041120
    Abstract: A transistor device comprises: at least one individual transistor cell arranged in a transistor cell field on a semiconductor body, each individual transistor cell comprising a gate electrode; a gate contact, electrically coupled to the gate electrodes of the transistor cells and configured to switch on the at least one transistor cell by providing a gate current in a first direction and configured to switch off the at least one transistor cell by providing a gate current in a second direction, the second direction being opposite to the first direction; at least one gate-resistor structure monolithically integrated in the transistor device, the gate-resistor structure providing a first resistance for the gate current when the gate current flows in the first direction, and providing a second resistance for the gate current, which is different from the first resistance, when the gate current flows in the second direction.
    Type: Grant
    Filed: July 25, 2013
    Date of Patent: May 26, 2015
    Assignee: Infineon Technologies AG
    Inventors: Stephan Voss, Peter Tuerkes, Holger Huesken
  • Publication number: 20150028383
    Abstract: A transistor device comprises: at least one individual transistor cell arranged in a transistor cell field on a semiconductor body, each individual transistor cell comprising a gate electrode; a gate contact, electrically coupled to the gate electrodes of the transistor cells and configured to switch on the at least one transistor cell by providing a gate current in a first direction and configured to switch off the at least one transistor cell by providing a gate current in a second direction, the second direction being opposite to the first direction; at least one gate-resistor structure monolithically integrated in the transistor device, the gate-resistor structure providing a first resistance for the gate current when the gate current flows in the first direction, and providing a second resistance for the gate current, which is different from the first resistance, when the gate current flows in the second direction.
    Type: Application
    Filed: July 25, 2013
    Publication date: January 29, 2015
    Inventors: Stephan Voss, Peter Tuerkes, Holger Huesken
  • Patent number: 5436502
    Abstract: A semiconductor component comprises a semiconductor body that has its underside secured on a metallic substrate and is joined at its upper side to an auxiliary member composed of a material having great thermal conductivity and which serves as a heat buffer. This auxiliary member increases the loadability of the semiconductor component with respect to additional, thermal stressing pulses.
    Type: Grant
    Filed: October 21, 1994
    Date of Patent: July 25, 1995
    Assignee: Siemens Aktiengesellschaft
    Inventors: Reinhold Kuhnert, Peter Tuerkes
  • Patent number: 5300458
    Abstract: A semiconductor component comprises a semiconductor body that has its underside secured on a metallic substrate and is joined at its upper side to an auxiliary member composed of a material having great thermal conductivity and which serves as a heat buffer. This auxiliary member increases the loadability of the semiconductor component with respect to additional, thermal stressing pulses.
    Type: Grant
    Filed: February 25, 1993
    Date of Patent: April 5, 1994
    Assignee: Siemens Aktiengesellschaft
    Inventors: Reinhold Kuhnert, Peter Tuerkes
  • Patent number: 5169790
    Abstract: A thyristor having low-reflection light-triggering structure. In a light-triggerable thyristor, pyramidal depressions are formed in a simple manner by a preferred etching method, being formed in the region of the photon entry face in order to produce a low-reflection light-triggering structure. Incident light is absorbed in the pyramidal depressions largely independent of the wavelength of the incident light and nearly completely. The low-reflection light-triggering structure thereby produced can be formed with relatively little outlay. This is especially true when a defined overhead ignition voltage is simultaneously set by the pyramidal depressions.
    Type: Grant
    Filed: October 10, 1991
    Date of Patent: December 8, 1992
    Assignee: Siemens Aktiengesellschaft
    Inventors: Peter Tuerkes, Reinhold Kuhnert
  • Patent number: 5083177
    Abstract: A thyristor having low-reflection light-triggering structure. In a light-triggerable thyristor, pyramidal depressions are formed in a simple manner by a preferred etching method, being formed in the region of the photon entry face in order to produce a low-reflection light-triggering structure. Incident light is absorbed in the pyramidal depressions largely independent of the wavelength of the incident light and nearly completely. The low-reflection light-triggering structure thereby produced can be formed with relatively little outlay. This is especially true when a defined overhead ignition voltage is simultaneously set by the pyramidal depressions.
    Type: Grant
    Filed: February 12, 1991
    Date of Patent: January 21, 1992
    Assignee: Siemens Aktiengesellschaft
    Inventors: Peter Tuerkes, Reinhold Kuhnert