Patents by Inventor Peter W. Richards

Peter W. Richards has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10219711
    Abstract: Some embodiments relate to a device, method, and/or computer-readable medium storing processor-executable process steps for processing a photoplethysmographic (“PPG”) signal in a monitoring device that monitors a property of blood flow. In some embodiments, the processing includes obtaining a first digital signal representing a detected light signal having a non-pulsatile (e.g., DC) component and a pulsatile component (e.g., AC). An offset control signal is generated from an estimation of the non-pulsatile component and a second digital signal is generated after subtracting the offset control signal from the detected light signal and applying a gain to the subtracted signal. A reconstructed signal is generated that is calculated from the gain and one or more of (i) the first digital signal, and (ii) the second digital signal and the offset control signal.
    Type: Grant
    Filed: July 29, 2016
    Date of Patent: March 5, 2019
    Assignee: Fitbit, Inc.
    Inventors: Anjian Wu, Peter W. Richards, Shelten Gee Jao Yuen
  • Publication number: 20190053754
    Abstract: Approaches to determining a sleep fitness score for a user are provided, such as may be based upon monitored breathing disturbances of a user. The system receives user state data generated over a time period by a combination of sensors provided via a wearable tracker associated with the user. A system can use this information to calculate a sleep fitness score, breathing disturbance score, or other such value. The system can classify every minute within the time period as either normal or atypical, for example, and may provide such information for presentation to the user.
    Type: Application
    Filed: August 16, 2018
    Publication date: February 21, 2019
    Inventors: Suraj Gowda, Conor Joseph Heneghan, Shelten Gee Jao Yuen, Anjian Wu, Daniel Joel Freschl, Peter W. Richards, Chris H. Sarantos, Jonathan Wonwook Kim
  • Patent number: 10185446
    Abstract: Touch pad structures are provided that gather touch sensor data. The data may be used to control a computer or other electronic device. The touch pad structures may be integrated into a computer or other computing equipment or may be provided as a stand-alone accessory. The touch pad structures may include a touch sensor array. The touch sensor array may include rows and columns of touch sensor electrodes, interconnect lines, and other conductive structures. The conductive structures on the touch sensor array may be formed from patterned layers of ink. Interconnect line segments in different layer of ink may be connected in rectangular contact regions. The touch sensor array may have a tail. A layer of insulator may be removed from the substrate across a tip portion of the tail to allow the line segments to be connected.
    Type: Grant
    Filed: October 15, 2010
    Date of Patent: January 22, 2019
    Assignee: Apple Inc.
    Inventors: Jay Kevin Osborn, Peter W. Richards
  • Patent number: 10168814
    Abstract: A force sensing device for electronic device. The force inputs may be detected by measuring changes in capacitance, as measured by surface flex of a device having a flexible touchable surface, causing flex at a compressible gap within the device. A capacitive sensor responsive to changes in distance across the compressible gap. The sensor can be positioned above or below, or within, a display element, and above or below, or within, a backlight unit. The device can respond to bending, twisting, or other deformation, to adjust those zero force measurements. The device can use measure of surface flux that appear at positions on the surface not directly the subject of applied force, such as when the user presses on a part of the frame or a surface without capacitive sensors.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: January 1, 2019
    Assignee: Apple Inc.
    Inventors: Steven P. Hotelling, Martin P. Grunthaner, Peter W. Richards, Romain A. Teil, Charley T. Ogata, Michael B. Wittenberg
  • Patent number: 10162444
    Abstract: A force-sensitive device for electronic device. The force inputs may be detected by measuring changes in capacitance, as measured by surface flex of a device having a flexible touchable surface, causing flex at a compressible gap within the device. A capacitive sensor responsive to changes in distance across the compressible gap. The sensor can be positioned above or below, or within, a display element, and above or below, or within, a backlight unit. The device can respond to bending, twisting, or other deformation, to adjust those zero force measurements. The device can use measure of surface flux that appear at positions on the surface not directly the subject of applied force, such as when the user presses on a part of the frame or a surface without capacitive sensors.
    Type: Grant
    Filed: December 16, 2015
    Date of Patent: December 25, 2018
    Assignee: Apple Inc.
    Inventors: Charley T. Ogata, Martin P. Grunthaner, Michael B. Wittenberg, Peter W. Richards, Romain A. Teil, Steven P. Hotelling
  • Patent number: 10139959
    Abstract: A method of calibrating a force sensor that includes an input surface and an array of sensing elements. The input has a number of test locations and is deformable under applied force. The force sensor is mounted in a predetermined test orientation. For each test location of the plurality of test locations on the input surface of the force sensor a predetermined test force to the test location. An element calibration value is measured for each sensing element of the array of sensing elements of the force sensor. An (x, y) deformation map of the input surface of the force sensor corresponding to the application of the predetermined test force to the test location is determined based on the measured element calibration values.
    Type: Grant
    Filed: November 26, 2013
    Date of Patent: November 27, 2018
    Assignee: Apple Inc.
    Inventors: Christopher J. Butler, Martin P. Grunthaner, Peter W. Richards, Romain A. Teil, Sinan Filiz
  • Patent number: 9990087
    Abstract: A capacitive force sensor characterization system for calibrating a capacitive force sensor included in a personal electronic device. The capacitive force sensor includes a first capacitor plate coupled to a flexible element of the personal electronic device, which is coupled to the device housing, and a second capacitor plate coupled to an internal structural member of the personal electronic device. The internal structural member is not coupled to the housing during the characterization.
    Type: Grant
    Filed: September 28, 2013
    Date of Patent: June 5, 2018
    Assignee: Apple Inc.
    Inventor: Peter W. Richards
  • Patent number: 9983715
    Abstract: Systems and methods related to piezoelectric based force sensing in touch devices are presented. One embodiment, for example, may take the form of an apparatus including a touch device having a deformable device stack and a piezoelectric element positioned relative to the deformable device stack such that the piezoelectric element deforms with the deformable stack. Deformation of the piezoelectric element generates a signal having a magnitude discernable as representative of an amount of force applied to the touch device.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: May 29, 2018
    Assignee: Apple Inc.
    Inventors: Sinan Filiz, Brian Q. Huppi, Kai Wang, Peter W. Richards, Vikram Garg
  • Publication number: 20180064345
    Abstract: Some embodiments relate to a device, method, and/or computer-readable medium storing processor-executable process steps to remove a component of a signal corresponding to ambient light in a photoplethysmographic sensor device, including capturing a first detected light signal representing an ambient light at a first time, causing a light emitter to generate a source light signal driven at a first level, capturing a second detected light signal representing the source light signal after interacting with a user's tissue plus the first detected light signal, generating a first output signal based on the second detected light signal adjusted by the first detected light signal, causing the light emitter to generate a source light signal driven at a second level, capturing a third detected light signal representing the source light signal driven at the second level after interacting with the user's skin plus the first detected light signal, and generating a second output signal based on the third detected light sig
    Type: Application
    Filed: August 28, 2017
    Publication date: March 8, 2018
    Inventor: Peter W. Richards
  • Patent number: 9891759
    Abstract: Detecting force and touch using FTIR and capacitive location. FTIR determines applied force by the user's finger within infrared transmit lines on a touch device. A pattern of such lines determine optical coupling with the touch device. Capacitive sensing can determine (A) where the finger actually touches, so the touch device more accurately infers applied force; (B) whether finger touches shadow each other; (C) as a baseline for applied force; or (D) whether attenuated reflection is due to a current optical coupling, or is due to an earlier optical coupling, such as a smudge on the cover glass. If there is attenuated reflection without actual touching, the touch device can reset a baseline for applied force for the area in which that smudge remains. Infrared transmitters and receivers are positioned where they are not visible to a user, such as below a frame or mask for the cover glass.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: February 13, 2018
    Assignee: Apple Inc.
    Inventors: Martin P. Grunthaner, Peter W. Richards, Romain A. Teil, Steven P. Hotelling
  • Publication number: 20180028077
    Abstract: Some embodiments relate to a device, method, and/or computer-readable medium storing processor-executable process steps for processing a photoplethysmographic (“PPG”) signal in a monitoring device that monitors a property of blood flow. In some embodiments, the processing includes obtaining a first digital signal representing a detected light signal having a non-pulsatile (e.g., DC) component and a pulsatile component (e.g., AC). An offset control signal is generated from an estimation of the non-pulsatile component and a second digital signal is generated after subtracting the offset control signal from the detected light signal and applying a gain to the subtracted signal. A reconstructed signal is generated that is calculated from the gain and one or more of (i) the first digital signal, and (ii) the second digital signal and the offset control signal.
    Type: Application
    Filed: July 29, 2016
    Publication date: February 1, 2018
    Inventors: Anjian WU, Peter W. RICHARDS, Shelten Gee Jao YUEN
  • Patent number: 9851828
    Abstract: A touch sensitive input system for an electronic device includes a deflection sensor configured to generate a deflection signal based on deflection of a control or sensing surface, and a processor in signal communication with the deflection sensor. The processor is operable to generate a deflection or displacement map characterizing displacement of the surface based on the deflection signal, and a force map characterizing force on the surface based on a transformation of the displacement map. The transformation may be based on a generalized inverse of a compliance operator, where the compliance operator relates the displacement map to the force map. The compliance operator is not necessarily square, and does not necessarily have a traditional inverse.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: December 26, 2017
    Assignee: Apple Inc.
    Inventors: Peter W. Richards, Sinan Filiz
  • Publication number: 20170311825
    Abstract: In one embodiment, a data processing method comprises obtaining one or more first photoplethysmography (PPG) signals based on one or more first light sources that are configured to emit light having a first light wavelength corresponding to a green light wavelength; obtaining one or more second PPG signals based on one or more second light sources that are configured to emit light having a second light wavelength corresponding to a red light wavelength, one or more of the first light sources and one or more of the second light sources being co-located; generating an estimated heart rate value based on one or more of the first PPG signals and the second PPG signals; and causing the estimated heart rate value to be displayed via a user interface on a client device.
    Type: Application
    Filed: April 28, 2017
    Publication date: November 2, 2017
    Inventors: KEVIN PU WEEKLY, SUBRAMANIAM VENKATRAMAN, ANDREW LARSEN AXLEY, DANIEL J. FRESCHL, PETER W. RICHARDS, CHRIS H. SARANTOS
  • Patent number: 9775548
    Abstract: Blood oxygenation sensors including high-aspect-ratio photodetector elements are discussed herein. Such high-aspect-ratio photodetector elements may provide improved signal-strength-to-power-consumption performance for blood oxygenation sensors incorporating such photodetector elements as compared with blood oxygenation sensors incorporating, for example, square photodetector elements.
    Type: Grant
    Filed: June 24, 2016
    Date of Patent: October 3, 2017
    Assignee: Fitbit, Inc.
    Inventors: Chris H. Sarantos, Peter W. Richards
  • Patent number: 9763584
    Abstract: An optical measurement module is disclosed that includes three or more recessed regions separated from each other by two or more barrier walls, the recessed regions including at least two distal recessed regions. The optical measurement module may also include first and second photo-emitter elements that emit light in different spectrums and first and second photodetector elements. One or more of the second photo-emitter elements may be located in one of the distal recessed regions, and the second photodetector element may be located in one of the other distal recessed regions. The first photodetector element may be located in a recessed region other than the recessed region where the second photodetector element is located, and the one or more photo-emitter elements may be located in one of the recessed regions other than the one where the first photodetector element is located.
    Type: Grant
    Filed: June 27, 2016
    Date of Patent: September 19, 2017
    Assignee: Fitbit, Inc.
    Inventors: Daniel J. Freschl, Chris H. Sarantos, Peter W. Richards, Anthony Alexander Cacace, Ritika Sahai, Lindsey Michelle Sunden
  • Patent number: 9757046
    Abstract: Light-blocking structures for optical physiological parameter measurement devices or sensors are disclosed. Such optical physiological parameter measurement devices or sensors may include two photodetectors and a photo-emitter, as well as barrier walls that are interposed between the photo-emitter and the photodetectors. The barrier walls may have recesses that intermesh with surface profiles of protrusions that are attached to or part of a window of the optical physiological parameter measurement devices or sensors.
    Type: Grant
    Filed: June 27, 2016
    Date of Patent: September 12, 2017
    Assignee: Fitbit, Inc.
    Inventors: Daniel J. Freschl, Chris H. Sarantos, Peter W. Richards, Anthony Alexander Cacace, Ritika Sahai, Lindsey Michelle Sunden
  • Patent number: 9743838
    Abstract: Some embodiments relate to a device, method, and/or computer-readable medium storing processor-executable process steps to remove a component of a signal corresponding to ambient light in a photoplethysmographic sensor device, including capturing a first detected light signal representing an ambient light at a first time, causing a light emitter to generate a source light signal driven at a first level, capturing a second detected light signal representing the source light signal after interacting with a user's tissue plus the first detected light signal, generating a first output signal based on the second detected light signal adjusted by the first detected light signal, causing the light emitter to generate a source light signal driven at a second level, capturing a third detected light signal representing the source light signal driven at the second level after interacting with the user's skin plus the first detected light signal, and generating a second output signal based on the third detected light sig
    Type: Grant
    Filed: October 2, 2015
    Date of Patent: August 29, 2017
    Assignee: FITBIT, INC.
    Inventor: Peter W. Richards
  • Patent number: 9743849
    Abstract: Light-blocking structures for optical physiological parameter measurement devices or sensors are disclosed. Such structures may include barrier walls and protrusions that further include intermeshing surface profiles designed to promote light-blocking capabilities at small scales to offset potential gaps that may occur due to assembly tolerance stack-ups.
    Type: Grant
    Filed: June 15, 2016
    Date of Patent: August 29, 2017
    Assignee: Fitbit, Inc.
    Inventors: Daniel J. Freschl, Chris H. Sarantos, Peter W. Richards, Anthony Alexander Cacace, Ritika Sahai, Lindsey Michelle Sunden
  • Patent number: 9730644
    Abstract: Processing a photoplethysmographic (“PPG”) signal in a monitoring device that monitors a property of blood flow. A switching component is operated to select between at least a first light source when the mode selection signal specifies the first mode of operation and a second light source when a mode selection signal specifies the second mode of operation. A selected one of the first light source and the second light source, as selected by the switching component, is then operated. A first digital signal representing a detected light signal from the selected light source is obtained, and a second digital signal is generated from the first digital signal based at least in part on the selected mode of operation. The second digital signal is provided to a processor for use by the processor in measuring a property of blood flow.
    Type: Grant
    Filed: July 29, 2016
    Date of Patent: August 15, 2017
    Assignee: FITBIT, INC.
    Inventors: Anjian Wu, Peter W. Richards, Shelten Gee Jao Yuen
  • Publication number: 20170220193
    Abstract: A capacitive sensing device can include multiple capacitive sensors. A first device controller is operatively connected to a portion of the capacitive sensors, while a second device controller is operatively connected to another portion of capacitive sensors. A common node or shield can be connected between the first device controller and the second device controller. Charging and discharging events of selected drive lines in the capacitive sensing device and/or of the common node or shield can be synchronized to reduce undesirable effects such as noise and/or to prevent the charging events and the discharging events from overlapping with each other. One or more reference capacitive sensors can be shared by the multiple device controllers.
    Type: Application
    Filed: April 21, 2017
    Publication date: August 3, 2017
    Inventors: Christian M. Sauer, Peter W. Richards