Patents by Inventor Petri Räisänen

Petri Räisänen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220367173
    Abstract: Methods are provided herein for deposition of oxide films. Oxide films may be deposited, including selective deposition of oxide thin films on a first surface of a substrate relative to a second, different surface of the same substrate. For example, an oxide thin film such as an insulating metal oxide thin film may be selectively deposited on a first surface of a substrate relative to a second, different surface of the same substrate. The second, different surface may be an organic passivation layer.
    Type: Application
    Filed: July 21, 2022
    Publication date: November 17, 2022
    Inventors: Suvi P. Haukka, Elina Färm, Raija H. Matero, Eva E. Tois, Hidemi Suemori, Antti Juhani Niskanen, Sung-Hoon Jung, Petri Räisänen
  • Patent number: 11430656
    Abstract: Methods are provided herein for deposition of oxide films. Oxide films may be deposited, including selective deposition of oxide thin films on a first surface of a substrate relative to a second, different surface of the same substrate. For example, an oxide thin film such as an insulating metal oxide thin film may be selectively deposited on a first surface of a substrate relative to a second, different surface of the same substrate. The second, different surface may be an organic passivation layer.
    Type: Grant
    Filed: November 29, 2016
    Date of Patent: August 30, 2022
    Assignee: ASM IP HOLDING B.V.
    Inventors: Suvi P. Haukka, Elina Färm, Raija H. Matero, Eva E. Tois, Hidemi Suemori, Antti Juhani Niskanen, Sung-Hoon Jung, Petri Räisänen
  • Publication number: 20210399111
    Abstract: A process for depositing titanium aluminum or tantalum aluminum thin films comprising nitrogen on a substrate in a reaction space can include at least one deposition cycle. The deposition cycle can include alternately and sequentially contacting the substrate with a vapor phase Ti or Ta precursor and a vapor phase Al precursor. At least one of the vapor phase Ti or Ta precursor and the vapor phase Al precursor may contact the substrate in the presence of a vapor phase nitrogen precursor.
    Type: Application
    Filed: September 2, 2021
    Publication date: December 23, 2021
    Inventors: Suvi Haukka, Michael Givens, Eric Shero, Jerry Winkler, Petri Räisänen, Timo Asikainen, Chiyu Zhu, Jaakko Anttila
  • Publication number: 20210335612
    Abstract: Methods and systems for depositing a layer, comprising one or more of vanadium boride and vanadium phosphide, onto a surface of a substrate and structures and devices formed using the methods are disclosed. An exemplary method includes using a deposition process. The deposition process can include providing a vanadium precursor to the reaction chamber and separately providing a reactant to the reaction chamber. Exemplary structures can include field effect transistor structures, such as gate all around structures. The layer comprising one or more of vanadium boride and vanadium phosphide can be used, for example, as barrier layers or liners, as work function layers, as dipole shifter layers, or the like.
    Type: Application
    Filed: April 21, 2021
    Publication date: October 28, 2021
    Inventors: Petro Deminskyi, Charles Dezelah, Jiyeon Kim, Giuseppe Alessio Verni, Maart Van Druenen, Qi Xie, Petri Räisänen
  • Patent number: 11139383
    Abstract: A process for depositing titanium aluminum or tantalum aluminum thin films comprising nitrogen on a substrate in a reaction space can include at least one deposition cycle. The deposition cycle can include alternately and sequentially contacting the substrate with a vapor phase Ti or Ta precursor and a vapor phase Al precursor. At least one of the vapor phase Ti or Ta precursor and the vapor phase Al precursor may contact the substrate in the presence of a vapor phase nitrogen precursor.
    Type: Grant
    Filed: April 15, 2020
    Date of Patent: October 5, 2021
    Assignee: ASM IP HOLDING B.V.
    Inventors: Suvi Haukka, Michael Givens, Eric Shero, Jerry Winkler, Petri Räisänen, Timo Asikainen, Chiyu Zhu, Jaakko Anttila
  • Publication number: 20200328285
    Abstract: A process for depositing titanium aluminum or tantalum aluminum thin films comprising nitrogen on a substrate in a reaction space can include at least one deposition cycle. The deposition cycle can include alternately and sequentially contacting the substrate with a vapor phase Ti or Ta precursor and a vapor phase Al precursor. At least one of the vapor phase Ti or Ta precursor and the vapor phase Al precursor may contact the substrate in the presence of a vapor phase nitrogen precursor.
    Type: Application
    Filed: April 15, 2020
    Publication date: October 15, 2020
    Inventors: Suvi Haukka, Michael Givens, Eric Shero, Jerry Winkler, Petri Räisänen, Timo Asikainen, Chiyu Zhu, Jaakko Anttila
  • Patent number: 10636889
    Abstract: A process for depositing titanium aluminum or tantalum aluminum thin films comprising nitrogen on a substrate in a reaction space can include at least one deposition cycle. The deposition cycle can include alternately and sequentially contacting the substrate with a vapor phase Ti or Ta precursor and a vapor phase Al precursor. At least one of the vapor phase Ti or Ta precursor and the vapor phase Al precursor may contact the substrate in the presence of a vapor phase nitrogen precursor.
    Type: Grant
    Filed: June 4, 2018
    Date of Patent: April 28, 2020
    Assignee: ASM IP Holding B.V.
    Inventors: Suvi Haukka, Michael Givens, Eric Shero, Jerry Winkler, Petri Räisänen, Timo Asikainen, Chiyu Zhu, Jaakko Anttila
  • Publication number: 20190043962
    Abstract: A process for depositing titanium aluminum or tantalum aluminum thin films comprising nitrogen on a substrate in a reaction space can include at least one deposition cycle. The deposition cycle can include alternately and sequentially contacting the substrate with a vapor phase Ti or Ta precursor and a vapor phase Al precursor. At least one of the vapor phase Ti or Ta precursor and the vapor phase Al precursor may contact the substrate in the presence of a vapor phase nitrogen precursor.
    Type: Application
    Filed: June 4, 2018
    Publication date: February 7, 2019
    Inventors: Suvi Haukka, Michael Givens, Eric Shero, Jerry Winkler, Petri Räisänen, Timo Asikainen, Chiyu Zhu, Jaakko Anttila
  • Patent number: 10002936
    Abstract: A process for depositing titanium aluminum or tantalum aluminum thin films comprising nitrogen on a substrate in a reaction space can include at least one deposition cycle. The deposition cycle can include alternately and sequentially contacting the substrate with a vapor phase Ti or Ta precursor and a vapor phase Al precursor. At least one of the vapor phase Ti or Ta precursor and the vapor phase Al precursor may contact the substrate in the presence of a vapor phase nitrogen precursor.
    Type: Grant
    Filed: October 21, 2015
    Date of Patent: June 19, 2018
    Assignee: ASM IP HOLDING B.V.
    Inventors: Suvi Haukka, Michael Givens, Eric Shero, Jerry Winkler, Petri Räisänen, Timo Asikainen, Chiyu Zhu, Jaakko Anttila
  • Publication number: 20180151345
    Abstract: Methods are provided herein for deposition of oxide films. Oxide films may be deposited, including selective deposition of oxide thin films on a first surface of a substrate relative to a second, different surface of the same substrate. For example, an oxide thin film such as an insulating metal oxide thin film may be selectively deposited on a first surface of a substrate relative to a second, different surface of the same substrate. The second, different surface may be an organic passivation layer.
    Type: Application
    Filed: November 29, 2016
    Publication date: May 31, 2018
    Inventors: Suvi P. Haukka, Elina Färm, Raija H. Matero, Eva E. Tois, Hidemi Suemori, Antti Juhani Niskanen, Sung-Hoon Jung, Petri Räisänen
  • Patent number: 9981286
    Abstract: Processes are provided for selectively depositing a metal silicide material on a first H-terminated surface of a substrate relative to a second, different surface of the same substrate. In some aspects, methods of forming a metal silicide contact layer for use in integrated circuit fabrication are provided.
    Type: Grant
    Filed: March 8, 2016
    Date of Patent: May 29, 2018
    Assignee: ASM IP HOLDING B.V.
    Inventors: Jacob Huffman Woodruff, Michael Eugene Givens, Bed Sharma, Petri Räisänen
  • Publication number: 20170259298
    Abstract: Processes are provided for selectively depositing a metal silicide material on a first H-terminated surface of a substrate relative to a second, different surface of the same substrate. In some aspects, methods of forming a metal silicide contact layer for use in integrated circuit fabrication are provided.
    Type: Application
    Filed: March 8, 2016
    Publication date: September 14, 2017
    Inventors: Jacob Huffman Woodruff, Michael Eugene Givens, Bed Sharma, Petri Räisänen
  • Publication number: 20160118261
    Abstract: A process for depositing titanium aluminum or tantalum aluminum thin films comprising nitrogen on a substrate in a reaction space can include at least one deposition cycle. The deposition cycle can include alternately and sequentially contacting the substrate with a vapor phase Ti or Ta precursor and a vapor phase Al precursor. At least one of the vapor phase Ti or Ta precursor and the vapor phase Al precursor may contact the substrate in the presence of a vapor phase nitrogen precursor.
    Type: Application
    Filed: October 21, 2015
    Publication date: April 28, 2016
    Inventors: Suvi Haukka, Michael Givens, Eric Shero, Jerry Winkler, Petri Räisänen, Timo Asikainen, Chiyu Zhu, Jaakko Anttila
  • Patent number: 8334218
    Abstract: In one aspect, non-conformal layers are formed by variations of plasma enhanced atomic layer deposition, where one or more of pulse duration, separation, RF power on-time, reactant concentration, pressure and electrode spacing are varied from true self-saturating reactions to operate in a depletion-effect mode. Deposition thus takes place close to the substrate surface but is controlled to terminate after reaching a specified distance into openings (e.g., deep DRAM trenches, pores, etc.). Reactor configurations that are suited to such modulation include showerhead, in situ plasma reactors, particularly with adjustable electrode spacing.
    Type: Grant
    Filed: October 2, 2009
    Date of Patent: December 18, 2012
    Assignee: ASM America, Inc.
    Inventors: Sebastian E. Van Nooten, Jan Willem Maes, Steven Marcus, Glen Wilk, Petri Räisänen, Kai-Erik Elers
  • Publication number: 20100022099
    Abstract: In one aspect, non-conformal layers are formed by variations of plasma enhanced atomic layer deposition, where one or more of pulse duration, separation, RF power on-time, reactant concentration, pressure and electrode spacing are varied from true self-saturating reactions to operate in a depletion-effect mode. Deposition thus takes place close to the substrate surface but is controlled to terminate after reaching a specified distance into openings (e.g., deep DRAM trenches, pores, etc.). Reactor configurations that are suited to such modulation include showerhead, in situ plasma reactors, particularly with adjustable electrode spacing.
    Type: Application
    Filed: October 2, 2009
    Publication date: January 28, 2010
    Applicant: ASM AMERICA, INC.
    Inventors: Sebastian E. Van Nooten, Jan Willem Maes, Steven Marcus, Glen Wilk, Petri Räisänen, Kai-Erik Elers
  • Patent number: 7608549
    Abstract: In one aspect, non-conformal layers are formed by variations of plasma enhanced atomic layer deposition, where one or more of pulse duration, separation, RF power on-time, reactant concentration, pressure and electrode spacing are varied from true self-saturating reactions to operate in a depletion-effect mode. Deposition thus takes place close to the substrate surface but is controlled to terminate after reaching a specified distance into openings (e.g., deep DRAM trenches, pores, etc.). Reactor configurations that are suited to such modulation include showerhead, in situ plasma reactors, particularly with adjustable electrode spacing.
    Type: Grant
    Filed: March 13, 2006
    Date of Patent: October 27, 2009
    Assignee: ASM America, Inc.
    Inventors: Sebastian E. Van Nooten, Jan Willem Maes, Steven Marcus, Glen Wilk, Petri Räisänen, Kai-Erik Elers
  • Patent number: 7498272
    Abstract: The present invention concerns a process for depositing rare earth oxide thin films, especially yttrium, lanthanum and gadolinium oxide thin films by an ALD process, according to which invention the source chemicals are cyclopentadienyl compounds or rare earth metals, especially those of yttrium, lanthanum and gadolinium. Suitable deposition temperatures for yttrium oxide are between 200 and 400° C. when the deposition pressure is between 1 and 50 mbar. Most suitable deposition temperatures for lanthanum oxide are between 160 and 165° C. when the deposition pressure is between 1 and 50 mbar.
    Type: Grant
    Filed: December 28, 2004
    Date of Patent: March 3, 2009
    Assignee: ASM International N.V.
    Inventors: Jaakko Niinistö, Matti Putkonen, Mikko Ritala, Petri Räisänen, Antti Niskanen, Markku Leskelä
  • Patent number: 6858546
    Abstract: The present invention concerns a process for depositing rare earth oxide thin films, especially yttrium, lanthanum and gadolinium oxide thin films by an ALD process, according to which invention the source chemicals are cyclopentadienyl compounds of rare earth metals, especially those of yttrium, lanthanum and gadolinium. Suitable deposition temperatures for yttrium oxide are between 200 and 400° C. when the deposition pressure is between 1 and 50 mbar. Most suitable deposition temperatures for lanthanum oxide are between 160 and 165° C. when the deposition pressure is between 1 and 50 mbar.
    Type: Grant
    Filed: February 4, 2002
    Date of Patent: February 22, 2005
    Assignee: ASM International, NV
    Inventors: Jaakko Niinistō, Matti Putkonen, Mikko Ritala, Petri Räisänen, Antti Niskanen, Markku Leskelä