Patents by Inventor Phil Belgrader

Phil Belgrader has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200399658
    Abstract: The present disclosure relates to an electroporation device that may include many electroporation units and electroporation systems that can be used in an automated environment, e.g., as one station or module in a multi-station or multi-module cell processing environment.
    Type: Application
    Filed: September 4, 2020
    Publication date: December 24, 2020
    Inventors: Jorge Bernate, Phil Belgrader, Don Masquelier, Vlorent Morina
  • Patent number: 10787683
    Abstract: The present disclosure relates to an electroporation device that may include many electroporation units and electroporation systems that can be used in an automated environment, e.g., as one station or module in a multi-station or multi-module cell processing environment.
    Type: Grant
    Filed: July 13, 2020
    Date of Patent: September 29, 2020
    Assignee: Inscripta, Inc.
    Inventors: Jorge Bernate, Phil Belgrader, Don Masquelier, Vlorent Morina
  • Patent number: 10738327
    Abstract: The present invention relates to an electroporation device that may include many electroporation units and electroporation systems that can be used in an automated environment, e.g., as one station or module in a multi-station or multi-module cell processing environment. The electroporation device comprises an electroporation cuvette coupled with an adapter or engagement member at the top that is configured for engagement with liquid handling instrumentation, and a “sipper” conduit at the bottom for sample intake and output.
    Type: Grant
    Filed: August 22, 2018
    Date of Patent: August 11, 2020
    Assignee: Inscripta, Inc.
    Inventors: Jorge Bernate, Phil Belgrader, Don Masquelier, Vlorent Morina
  • Publication number: 20190062787
    Abstract: The present disclosure relates to an electroporation device that may include many electroporation units and electroporation systems that can be used in an automated environment, e.g., as one station or module in a multi-station or multi-module cell processing environment.
    Type: Application
    Filed: August 22, 2018
    Publication date: February 28, 2019
    Inventors: Jorge Bernate, Phil Belgrader, Don Masquelier, Vlorent Morina
  • Patent number: 9127312
    Abstract: Provided herein are improved methods, compositions, and kits for analysis of nucleic acids. The improved methods, compositions, and kits can enable copy number estimation of a nucleic acid in a sample. Also provided herein are methods, compositions, and kits for determining the linkage of two or more copies of a target nucleic acid in a sample (e.g., whether the two or more copies are on the same chromosome or different chromosomes) or for phasing alleles.
    Type: Grant
    Filed: February 9, 2012
    Date of Patent: September 8, 2015
    Assignee: Bio-Rad Laboratories, Inc.
    Inventors: John Frederick Regan, Serge Saxonov, Mike Lucero, Ben Hindson, Phil Belgrader, Simant Dube, Austin So, Jeffrey Clark Mellen, Nicholas Jack Heredia, Kevin Ness, Bill Colston
  • Patent number: 8759085
    Abstract: A device for controlling temperature in a reaction chamber is disclosed. The device comprises: a bladder assembly comprising a housing dimensioned to hold a reaction chamber disposed within an interior volume of the housing; and a first temperature-control bladder disposed within the housing, the first temperature-control bladder is configured to receive a temperature-control fluid and comprises a flexible, heat conductive surface that comes in contact with at least a portion of an exterior surface of the reaction chamber after receiving the temperature-control fluid. Also disclosed are a bladder thermal cycler, a temperature-control bladder assembly and methods for producing a thermal cycle in a reaction chamber.
    Type: Grant
    Filed: April 29, 2011
    Date of Patent: June 24, 2014
    Assignee: Akonni Biosystems, Inc.
    Inventors: Phil Belgrader, Christopher G. Cooney, Robert Doebler, Anna Hickerson, Bruce Irvine, Ali Nadim, James Sterling, Reza Miraghaie
  • Publication number: 20120322058
    Abstract: Provided herein are improved methods, compositions, and kits for analysis of nucleic acids. The improved methods, compositions, and kits can enable copy number estimation of a nucleic acid in a sample. Also provided herein are methods, compositions, and kits for determining the linkage of two or more copies of a target nucleic acid in a sample (e.g., whether the two or more copies are on the same chromosome or different chromosomes) or for phasing alleles.
    Type: Application
    Filed: February 9, 2012
    Publication date: December 20, 2012
    Applicant: Bio-Rad Laboratories
    Inventors: John Frederick Regan, Serge Saxonov, Mike Lucero, Ben Hindson, Phil Belgrader, Simant Dube, Austin So, Jeffrey Clark Mellen, Nicholas Jack Heredia, Kevin Ness, Bill Colston
  • Patent number: 8334117
    Abstract: A device for controlling temperature in a reaction chamber is disclosed. The device comprises: a bladder assembly comprising a housing dimensioned to hold a reaction chamber disposed within an interior volume of the housing; and a first temperature-control bladder disposed within the housing, the first temperature-control bladder is configured to receive a temperature-control fluid and comprises a flexible, heat conductive surface that comes in contact with at least a portion of an exterior surface of the reaction chamber after receiving the temperature-control fluid. Also disclosed are a bladder thermal cycler, a temperature-control bladder assembly and methods for producing a thermal cycle in a reaction chamber.
    Type: Grant
    Filed: April 29, 2011
    Date of Patent: December 18, 2012
    Assignee: Akonni Biosystems, Inc.
    Inventors: Phil Belgrader, Christopher G. Cooney, Robert Doebler, Anna Hickerson, Bruce Irvine, Ali Nadim, James Sterling, Reza Miraghaie
  • Publication number: 20110269191
    Abstract: Methods and devices for performing chemical reactions under controlled temperature are described. In one embodiment, the devices provided by the invention comprise a housing diminished hold a reaction chamber disposed within an interior volume of the housing. The reaction chamber has thermally conductive interior and exterior surfaces defining an internal volume therein at a first temperature. The device also includes at least one temperature-control substance at a second temperature into said bladder and expel said temperature-control substance, the bladder expands to about substantially at least a portion of said exterior surfaces of said reaction chamber to enable thermal exchange between said temperature-control substance the said internal volume of reaction chamber.
    Type: Application
    Filed: April 29, 2011
    Publication date: November 3, 2011
    Inventor: Phil BELGRADER
  • Publication number: 20110207632
    Abstract: A device for controlling temperature in a reaction chamber is disclosed. The device comprises: a bladder assembly comprising a housing dimensioned to hold a reaction chamber disposed within an interior volume of the housing; and a first temperature-control bladder disposed within the housing, the first temperature-control bladder is configured to receive a temperature-control fluid and comprises a flexible, heat conductive surface that comes in contact with at least a portion of an exterior surface of the reaction chamber after receiving the temperature-control fluid. Also disclosed are a bladder thermal cycler, a temperature-control bladder assembly and methods for producing a thermal cycle in a reaction chamber.
    Type: Application
    Filed: April 29, 2011
    Publication date: August 25, 2011
    Inventors: Phil Belgrader, Christopher G. Cooney, Robert Doebler, Anna Hickerson, Bruce Irvine, Ali Nadim, James Sterling, Reza Miraghaie
  • Publication number: 20110207180
    Abstract: A device for controlling temperature in a reaction chamber is disclosed. The device comprises: a bladder assembly comprising a housing dimensioned to hold a reaction chamber disposed within an interior volume of the housing; and a first temperature-control bladder disposed within the housing, the first temperature-control bladder is configured to receive a temperature-control fluid and comprises a flexible, heat conductive surface that comes in contact with at least a portion of an exterior surface of the reaction chamber after receiving the temperature-control fluid. Also disclosed are a bladder thermal cycler, a temperature-control bladder assembly and methods for producing a thermal cycle in a reaction chamber.
    Type: Application
    Filed: April 29, 2011
    Publication date: August 25, 2011
    Inventors: Phil BELGRADER, Christopher G. COONEY, Robert DOEBLER, Anna HICKERSON, Bruce IRVINE, Ali NADIM, James STERLING, Reza MIRAGHAIE
  • Patent number: 7955841
    Abstract: A device for controlling temperature in a reaction chamber is disclosed. The device comprises: a bladder assembly comprising a housing dimensioned to hold a reaction chamber disposed within an interior volume of the housing; and a first temperature-control bladder disposed within the housing, the first temperature-control bladder is configured to receive a temperature-control fluid and comprises a flexible, heat conductive surface that comes in contact with at least a portion of an exterior surface of the reaction chamber after receiving the temperature-control fluid. Also disclosed are a bladder thermal cycler, a temperature-control bladder assembly and methods for producing a thermal cycle in a reaction chamber.
    Type: Grant
    Filed: September 22, 2008
    Date of Patent: June 7, 2011
    Assignee: Akonni Biosystems
    Inventors: Phil Belgrader, Christopher G. Cooney, Robert Doebler, Anna Hickerson, Bruce Irvine, Ali Nadim, James Sterling, Reza Miraghaie
  • Patent number: 7955840
    Abstract: Methods and devices for performing chemical reactions under controlled temperatures are described. In one embodiment, the devices provided by the invention comprise a housing dimensioned to hold a reaction chamber disposed within an interior volume of the housing. The reaction chamber has thermally conductive interior and exterior surfaces defining an internal volume therein at a first temperature. The device also includes at least one thermally conductive temperature-control bladder disposed therein, which bladder is configured to receive a temperature-control substance at a second temperature into said bladder and expel said temperature-control substance from said bladder. The bladder is further configured such that upon receiving the temperature-control substance, the bladder expands to abut substantially at least a portion of said exterior surfaces of said reaction chamber to enable thermal exchange between said temperature-control substance the said internal volume of reaction chamber.
    Type: Grant
    Filed: August 23, 2007
    Date of Patent: June 7, 2011
    Assignee: Akonni Biosystems
    Inventor: Phil Belgrader
  • Publication number: 20090126514
    Abstract: A sample collection system and method for airborne biological agents is disclosed. The sample collection system comprises a sample collection module that collects particles in an air flow and transfer the collected particles into a sampling fluid, and a sample preparation module that is responsible for accepting the sampling fluid from the sample collection module, continuously aggregating or concentrating the collected particles in the sampling fluid during the sampling process and recycling a particle-lean sampling fluid back to the collection module.
    Type: Application
    Filed: September 5, 2007
    Publication date: May 21, 2009
    Inventors: Eric Gregory Burroughs, Kenneth Scott Damer, Phil Belgrader, Benjamin Raab
  • Publication number: 20090111193
    Abstract: A sample preparation device is disclosed. The sample preparation device includes a housing defining a passage way between a first opening and a second opening; and a sample filter occupying a section of said passage way. The sample filter contains a monolith adsorbent that specifically binds to nucleic acids. Also disclosed are sample filters containing glass frit is coated with an capture agent that binds specifically to an analyte of interest, sample filters containing a hydrophilic matrix with impregnated chemicals that lyses cell membranes, a cartridge base and an integrated sample preparation cartridge.
    Type: Application
    Filed: June 26, 2008
    Publication date: April 30, 2009
    Inventors: Christopher G. Cooney, Phil Belgrader
  • Publication number: 20090087903
    Abstract: A device for controlling temperature in a reaction chamber is disclosed. The device comprises: a bladder assembly comprising a housing dimensioned to hold a reaction chamber disposed within an interior volume of the housing; and a first temperature-control bladder disposed within the housing, the first temperature-control bladder is configured to receive a temperature-control fluid and comprises a flexible, heat conductive surface that comes in contact with at least a portion of an exterior surface of the reaction chamber after receiving the temperature-control fluid. Also disclosed are a bladder thermal cycler, a temperature-control bladder assembly and methods for producing a thermal cycle in a reaction chamber.
    Type: Application
    Filed: September 22, 2008
    Publication date: April 2, 2009
    Inventors: Phil Belgrader, Christopher G. Cooney, Robert Doebler, Anna Hickerson, Bruce Irvine, Ali Nadim, James Sterling, Reza Miraghaie
  • Publication number: 20090053772
    Abstract: Methods and devices for performing chemical reactions under controlled temperatures are described. In one embodiment, the devices provided by the invention comprise a housing dimensioned to hold a reaction chamber disposed within an interior volume of the housing. The reaction chamber has thermally conductive interior and exterior surfaces defining an internal volume therein at a first temperature. The device also includes at least one thermally conductive temperature-control bladder disposed therein, which bladder is configured to receive a temperature-control substance at a second temperature into said bladder and expel said temperature-control substance from said bladder. The bladder is further configured such that upon receiving the temperature-control substance, the bladder expands to abut substantially at least a portion of said exterior surfaces of said reaction chamber to enable thermal exchange between said temperature-control substance the said internal volume of reaction chamber.
    Type: Application
    Filed: August 23, 2007
    Publication date: February 26, 2009
    Applicant: Akonni Biosystems
    Inventor: Phil Belgrader
  • Patent number: 6699713
    Abstract: A portable polymerase chain reaction DNA amplification and detection system includes one or more chamber modules. Each module supports a duplex assay of a biological sample. Each module has two parallel interrogation ports with a linear optical system. The system is capable of being handheld.
    Type: Grant
    Filed: December 29, 2000
    Date of Patent: March 2, 2004
    Assignee: The Regents of the University of California
    Inventors: William J. Benett, James B. Richards, Paul L. Stratton, Dean R. Hadley, Fred P. Milanovich, Phil Belgrader, Peter L. Meyer
  • Publication number: 20020191826
    Abstract: A portable polymerase chain reaction DNA amplification and detection system includes one or more chamber modules. Each module supports a duplex assay of a biological sample. Each module has two parallel interrogation ports with a linear optical system. The system is capable of being handheld.
    Type: Application
    Filed: December 29, 2000
    Publication date: December 19, 2002
    Applicant: The Regents of the University of California
    Inventors: William J. Benett, James B. Richards, Paul L. Stratton, Dean R. Hadley, Fred P. Milanovich, Phil Belgrader, Peter L. Meyer