Patents by Inventor Philip A. Lampe

Philip A. Lampe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230284047
    Abstract: The described features generally relate to determining dynamic signal quality criteria for an installation of satellite terminals for communications in a satellite communications system. In particular, the signal quality criteria for an installation may be based on an identified position of the satellite terminal to be installed, and in some examples based on the positions and signal characteristics of neighboring satellite terminals that have already been installed. In some examples, a signal quality map may be generated for a service beam coverage area, based on predetermined transmission characteristics and/or measured transmissions from a number of satellite terminals served by a communications satellite. The generated signal quality map may then be used to determine a signal quality threshold for the installation of a satellite terminal being installed for communications in a satellite communications system.
    Type: Application
    Filed: December 27, 2022
    Publication date: September 7, 2023
    Inventors: Kenneth V. Buer, Clifford K. Burdick, Ian A. Cleary, Ramanamurthy V. Darapu, David H. Irvine, Philip A. Lampe
  • Patent number: 11582623
    Abstract: The described features generally relate to determining dynamic signal quality criteria for an installation of satellite terminals for communications in a satellite communications system. In particular, the signal quality criteria for an installation may be based on an identified position of the satellite terminal to be installed, and in some examples based on the positions and signal characteristics of neighboring satellite terminals that have already been installed. In some examples, a signal quality map may be generated for a service beam coverage area, based on predetermined transmission characteristics and/or measured transmissions from a number of satellite terminals served by a communications satellite. The generated signal quality map may then be used to determine a signal quality threshold for the installation of a satellite terminal being installed for communications in a satellite communications system.
    Type: Grant
    Filed: July 28, 2021
    Date of Patent: February 14, 2023
    Assignee: Viasat, Inc.
    Inventors: Kenneth V. Buer, Clifford K. Burdick, Ian A. Cleary, Ramanamurthy V. Darapu, David H. Irvine, Philip A. Lampe
  • Publication number: 20230003823
    Abstract: Determining alignment and clear line-of-sight (LOS) of a satellite antenna using sensor data from an LOS sensor of the satellite antenna. Described techniques include storing first sensor data captured by the LOS sensor at a first time, the first sensor data indicating a first LOS condition of the satellite antenna corresponding to the satellite antenna having a beam LOS with a satellite of the satellite communication system that is aligned and unobstructed. The techniques may include receiving second sensor data captured by the LOS sensor at a second time after the first time, the second sensor data indicating a second LOS condition of the satellite antenna. The techniques may include determining an LOS condition change for the satellite antenna between the first time and the second time based on a comparison of the second sensor data with the first sensor data.
    Type: Application
    Filed: July 13, 2022
    Publication date: January 5, 2023
    Inventors: John R. Zlogar, Philip A. Lampe, Kurt A. Zimmerman
  • Patent number: 11422219
    Abstract: Determining alignment and clear line-of-sight (LOS) of a satellite antenna using sensor data from an LOS sensor of the satellite antenna. Described techniques include storing first sensor data captured by the LOS sensor at a first time, the first sensor data indicating a first LOS condition of the satellite antenna corresponding to the satellite antenna having a beam LOS with a satellite of the satellite communication system that is aligned and unobstructed. The techniques may include receiving second sensor data captured by the LOS sensor at a second time after the first time, the second sensor data indicating a second LOS condition of the satellite antenna. The techniques may include determining an LOS condition change for the satellite antenna between the first time and the second time based on a comparison of the second sensor data with the first sensor data.
    Type: Grant
    Filed: May 30, 2019
    Date of Patent: August 23, 2022
    Assignee: Viasat, Inc.
    Inventors: John R. Zlogar, Philip A. Lampe, Kurt A. Zimmerman
  • Publication number: 20220231757
    Abstract: The described features generally relate to receiving one or more positioning signals at a satellite terminal during installation of the satellite terminal at a customer premises, and providing position-based access to a satellite communications system based on a satellite terminal installation position determined from the received positioning signals. The determined installation position of the satellite terminal may then be employed for various network access techniques, such as providing access to the satellite communications system, providing position-based content, or restricting content via the satellite communications system based on the determined installation position.
    Type: Application
    Filed: April 11, 2022
    Publication date: July 21, 2022
    Inventors: Kenneth V. Buer, Clifford K. Burdick, David H. Irvine, Philip A. Lampe, Timothy J. Martin, Brian T. Sleight
  • Patent number: 11374650
    Abstract: The described features generally relate to receiving one or more positioning signals at a satellite terminal during installation of the satellite terminal at a customer premises, and providing position-based access to a satellite communications system based on a satellite terminal installation position determined from the received positioning signals. The determined installation position of the satellite terminal may then be employed for various network access techniques, such as providing access to the satellite communications system, providing position-based content, or restricting content via the satellite communications system based on the determined installation position.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: June 28, 2022
    Assignee: Viasat, Inc.
    Inventors: Kenneth V. Buer, Clifford K. Burdick, David H. Irvine, Philip A. Lampe, Timothy J. Martin, Brian T. Sleight
  • Publication number: 20220038175
    Abstract: The described features generally relate to determining dynamic signal quality criteria for an installation of satellite terminals for communications in a satellite communications system. In particular, the signal quality criteria for an installation may be based on an identified position of the satellite terminal to be installed, and in some examples based on the positions and signal characteristics of neighboring satellite terminals that have already been installed. In some examples, a signal quality map may be generated for a service beam coverage area, based on predetermined transmission characteristics and/or measured transmissions from a number of satellite terminals served by a communications satellite. The generated signal quality map may then be used to determine a signal quality threshold for the installation of a satellite terminal being installed for communications in a satellite communications system.
    Type: Application
    Filed: July 28, 2021
    Publication date: February 3, 2022
    Inventors: Kenneth V. Buer, Clifford K. Burdick, Ian A. Cleary, Ramanamurthy V. Darapu, David H. Irvine, Philip A. Lampe
  • Patent number: 11109245
    Abstract: The described features generally relate to determining dynamic signal quality criteria for an installation of satellite terminals for communications in a satellite communications system. In particular, the signal quality criteria for an installation may be based on an identified position of the satellite terminal to be installed, and in some examples based on the positions and signal characteristics of neighboring satellite terminals that have already been installed. In some examples, a signal quality map may be generated for a service beam coverage area, based on predetermined transmission characteristics and/or measured transmissions from a number of satellite terminals served by a communications satellite. The generated signal quality map may then be used to determine a signal quality threshold for the installation of a satellite terminal being installed for communications in a satellite communications system.
    Type: Grant
    Filed: January 21, 2020
    Date of Patent: August 31, 2021
    Assignee: Viasat, Inc.
    Inventors: Kenneth V. Buer, Clifford K. Burdick, Ian A. Cleary, Ramanamurthy V. Darapu, David H. Irvine, Philip A. Lampe
  • Publication number: 20200267575
    Abstract: The described features generally relate to determining dynamic signal quality criteria for an installation of satellite terminals for communications in a satellite communications system. In particular, the signal quality criteria for an installation may be based on an identified position of the satellite terminal to be installed, and in some examples based on the positions and signal characteristics of neighboring satellite terminals that have already been installed. In some examples, a signal quality map may be generated for a service beam coverage area, based on predetermined transmission characteristics and/or measured transmissions from a number of satellite terminals served by a communications satellite. The generated signal quality map may then be used to determine a signal quality threshold for the installation of a satellite terminal being installed for communications in a satellite communications system.
    Type: Application
    Filed: January 21, 2020
    Publication date: August 20, 2020
    Inventors: Kenneth V. Buer, Clifford K. Burdick, Ian Cleary, Ramanamurthy V. Darapu, David H. Irvine, Philip A. Lampe
  • Patent number: 10609576
    Abstract: The described features generally relate to determining dynamic signal quality criteria for an installation of satellite terminals for communications in a satellite communications system. In particular, the signal quality criteria for an installation may be based on an identified position of the satellite terminal to be installed, and in some examples based on the positions and signal characteristics of neighboring satellite terminals that have already been installed. In some examples, a signal quality map may be generated for a service beam coverage area, based on predetermined transmission characteristics and/or measured transmissions from a number of satellite terminals served by a communications satellite. The generated signal quality map may then be used to determine a signal quality threshold for the installation of a satellite terminal being installed for communications in a satellite communications system.
    Type: Grant
    Filed: July 10, 2018
    Date of Patent: March 31, 2020
    Assignee: Viasat, Inc.
    Inventors: Kenneth V. Buer, Clifford K. Burdick, Ian A. Cleary, Ramanamurthy V. Darapu, David H. Irvine, Philip A. Lampe
  • Publication number: 20190346530
    Abstract: Determining alignment and clear line-of-sight (LOS) of a satellite antenna using sensor data from an LOS sensor of the satellite antenna. Described techniques include storing first sensor data captured by the LOS sensor at a first time, the first sensor data indicating a first LOS condition of the satellite antenna corresponding to the satellite antenna having a beam LOS with a satellite of the satellite communication system that is aligned and unobstructed. The techniques may include receiving second sensor data captured by the LOS sensor at a second time after the first time, the second sensor data indicating a second LOS condition of the satellite antenna. The techniques may include determining an LOS condition change for the satellite antenna between the first time and the second time based on a comparison of the second sensor data with the first sensor data.
    Type: Application
    Filed: May 30, 2019
    Publication date: November 14, 2019
    Inventors: John R. Zlogar, Philip A. Lampe, Kurt A. Zimmerman
  • Patent number: 10359496
    Abstract: Determining alignment and clear line-of-sight (LOS) of a satellite antenna using sensor data from an LOS sensor of the satellite antenna. Described techniques include storing first sensor data captured by the LOS sensor at a first time, the first sensor data indicating a first LOS condition of the satellite antenna corresponding to the satellite antenna having a beam LOS with a satellite of the satellite communication system that is aligned and unobstructed. The techniques may include receiving second sensor data captured by the LOS sensor at a second time after the first time, the second sensor data indicating a second LOS condition of the satellite antenna. The techniques may include determining an LOS condition change for the satellite antenna between the first time and the second time based on a comparison of the second sensor data with the first sensor data.
    Type: Grant
    Filed: August 10, 2015
    Date of Patent: July 23, 2019
    Assignee: Viasat, Inc.
    Inventors: John R. Zlogar, Philip A. Lampe, Kurt A. Zimmerman
  • Publication number: 20180324606
    Abstract: The described features generally relate to determining dynamic signal quality criteria for an installation of satellite terminals for communications in a satellite communications system. In particular, the signal quality criteria for an installation may be based on an identified position of the satellite terminal to be installed, and in some examples based on the positions and signal characteristics of neighboring satellite terminals that have already been installed. In some examples, a signal quality map may be generated for a service beam coverage area, based on predetermined transmission characteristics and/or measured transmissions from a number of satellite terminals served by a communications satellite. The generated signal quality map may then be used to determine a signal quality threshold for the installation of a satellite terminal being installed for communications in a satellite communications system.
    Type: Application
    Filed: July 10, 2018
    Publication date: November 8, 2018
    Inventors: Kenneth V. Buer, Clifford K. Burdick, Ian A. Cleary, Ramanamurthy V. Darapu, David H. Irvine, Philip A. Lampe
  • Patent number: 10034183
    Abstract: The described features generally relate to determining dynamic signal quality criteria for an installation of satellite terminals for communications in a satellite communications system. In particular, the signal quality criteria for an installation may be based on an identified position of the satellite terminal to be installed, and in some examples based on the positions and signal characteristics of neighboring satellite terminals that have already been installed. In some examples, a signal quality map may be generated for a service beam coverage area, based on predetermined transmission characteristics and/or measured transmissions from a number of satellite terminals served by a communications satellite. The generated signal quality map may then be used to determine a signal quality threshold for the installation of a satellite terminal being installed for communications in a satellite communications system.
    Type: Grant
    Filed: February 26, 2016
    Date of Patent: July 24, 2018
    Assignee: ViaSat, Inc.
    Inventors: Kenneth V. Buer, Clifford K. Burdick, Ian A. Cleary, Ramanamurthy V. Darapu, David H. Irvine, Philip A. Lampe
  • Publication number: 20180006710
    Abstract: The described features generally relate to receiving one or more positioning signals at a satellite terminal during installation of the satellite terminal at a customer premises, and providing position-based access to a satellite communications system based on a satellite terminal installation position determined from the received positioning signals. The determined installation position of the satellite terminal may then be employed for various network access techniques, such as providing access to the satellite communications system, providing position-based content, or restricting content via the satellite communications system based on the determined installation position.
    Type: Application
    Filed: May 27, 2016
    Publication date: January 4, 2018
    Inventors: Kenneth V. Buer, Clifford K. Burdick, David H. Irvine, Philip A. Lampe, Timothy J. Martin, Brian T. Sleight
  • Publication number: 20170251381
    Abstract: The described features generally relate to determining dynamic signal quality criteria for an installation of satellite terminals for communications in a satellite communications system. In particular, the signal quality criteria for an installation may be based on an identified position of the satellite terminal to be installed, and in some examples based on the positions and signal characteristics of neighboring satellite terminals that have already been installed. In some examples, a signal quality map may be generated for a service beam coverage area, based on predetermined transmission characteristics and/or measured transmissions from a number of satellite terminals served by a communications satellite. The generated signal quality map may then be used to determine a signal quality threshold for the installation of a satellite terminal being installed for communications in a satellite communications system.
    Type: Application
    Filed: February 26, 2016
    Publication date: August 31, 2017
    Inventors: Kenneth V. Buer, Clifford K. Burdick, Ian A. Cleary, Ramanamurthy V. Darapu, David H. Irvine, Philip A. Lampe
  • Publication number: 20170045623
    Abstract: Determining alignment and clear line-of-sight (LOS) of a satellite antenna using sensor data from an LOS sensor of the satellite antenna. Described techniques include storing first sensor data captured by the LOS sensor at a first time, the first sensor data indicating a first LOS condition of the satellite antenna corresponding to the satellite antenna having a beam LOS with a satellite of the satellite communication system that is aligned and unobstructed. The techniques may include receiving second sensor data captured by the LOS sensor at a second time after the first time, the second sensor data indicating a second LOS condition of the satellite antenna. The techniques may include determining an LOS condition change for the satellite antenna between the first time and the second time based on a comparison of the second sensor data with the first sensor data.
    Type: Application
    Filed: August 10, 2015
    Publication date: February 16, 2017
    Inventors: John R. Zlogar, Philip A. Lampe, Kurt A. Zimmerman