Patents by Inventor Philip Allan Kraus

Philip Allan Kraus has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11551905
    Abstract: Embodiments described herein include a resonant process monitor and methods of forming such a resonant process monitor. In an embodiment, the resonant process monitor includes a frame that has a first opening and a second opening. In an embodiment, a resonant body seals the first opening of the frame. In an embodiment, a first electrode on a first surface of the resonant body contacts the frame and a second electrode is on a second surface of the resonant body. Embodiments also include a back plate that seals the second opening of the frame. In an embodiment the back plate is mechanically coupled to the frame, and the resonant body, the back plate, and interior surfaces of the frame define a cavity.
    Type: Grant
    Filed: March 19, 2018
    Date of Patent: January 10, 2023
    Assignee: Intel Corporation
    Inventors: Yaoling Pan, Vijaykumar Krithivasan, Shimin Mao, Kelvin Chan, Michael D. Willwerth, Anantha Subramani, Ashish Goel, Chih-shun Lu, Philip Allan Kraus, Patrick John Tae, Leonard Tedeschi
  • Publication number: 20230003598
    Abstract: Embodiments disclosed herein include diagnostic substrates and methods of using the diagnostic substrates to extract plasma parameters. In an embodiment, a diagnostic substrate comprises a substrate and an array of resonators across the substrate. In an embodiment, the array of resonators comprises at least a first resonator with a first structure and a second resonator with a second structure. In an embodiment, the first structure is different than the second structure.
    Type: Application
    Filed: July 2, 2021
    Publication date: January 5, 2023
    Inventors: Chuang-Chia Lin, David Peterson, Philip Allan Kraus, Amir Bayati
  • Patent number: 11508558
    Abstract: Embodiments described herein generally related to a substrate processing apparatus, and more specifically to an improved showerhead assembly for a substrate processing apparatus. The showerhead assembly includes a chill plate, a gas plate, and a gas distribution plate having a top surface and a bottom surface. A plurality of protruded features contacts the top surface of the gas distribution plate. A fastener and an energy storage structure is provided on the protruded features. The energy storage structure is compressed by the fastener and axially loads at least one of the protruded features to compress the chill plate, the gas plate and the gas distribution plate.
    Type: Grant
    Filed: March 30, 2020
    Date of Patent: November 22, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Timothy Joseph Franklin, Steven E. Babayan, Philip Allan Kraus
  • Patent number: 11501955
    Abstract: Embodiments described herein include an applicator frame for a processing chamber. In an embodiment, the applicator frame comprises a first major surface of the applicator frame and a second major surface of the applicator frame opposite the first major surface. In an embodiment, the applicator frame further comprises a through hole, wherein the through hole extends entirely through the applicator frame. In an embodiment, the applicator frame also comprises a lateral channel embedded in the applicator frame. In an embodiment the lateral channel intersects the through hole.
    Type: Grant
    Filed: February 1, 2021
    Date of Patent: November 15, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Hanh Nguyen, Thai Cheng Chua, Philip Allan Kraus
  • Patent number: 11488796
    Abstract: Embodiments disclosed herein include a high-frequency emission module. In an embodiment, the high-frequency emission module comprises a solid state high-frequency power source, an applicator for propagating high-frequency electromagnetic radiation from the power source, and a thermal break coupled between the power source and the applicator. In an embodiment, the thermal break comprises a substrate, a trace on the substrate, and a ground plane.
    Type: Grant
    Filed: March 24, 2020
    Date of Patent: November 1, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Thai Cheng Chua, Hanh Nguyen, Philip Allan Kraus
  • Publication number: 20220344131
    Abstract: Embodiments include a modular microwave source. In an embodiment, the modular microwave source comprises a voltage control circuit, a voltage controlled oscillator, where an output voltage from the voltage control circuit drives oscillation in the voltage controlled oscillator. The modular microwave source may also include a solid state microwave amplification module coupled to the voltage controlled oscillator. In an embodiment, the solid state microwave amplification module amplifies an output from the voltage controlled oscillator. The modular microwave source may also include an applicator coupled to the solid state microwave amplification module, where the applicator is a dielectric resonator.
    Type: Application
    Filed: June 28, 2022
    Publication date: October 27, 2022
    Inventors: Philip Allan Kraus, Thai Cheng Chua
  • Publication number: 20220319812
    Abstract: Embodiments described herein include a processing tool that comprises a processing chamber, a chuck for supporting a substrate in the processing chamber, a dielectric window forming a portion of the processing chamber, and a modular high-frequency emission source. In an embodiment, the modular high-frequency emission source comprises a plurality of high-frequency emission modules. In an embodiment, each high-frequency emission module comprises, an oscillator module, amplification module, and an applicator. In an embodiment, the amplification module is coupled to the oscillator module. In an embodiment, the applicator is coupled to the amplification module. In an embodiment, the applicator is positioned proximate to the dielectric window.
    Type: Application
    Filed: June 14, 2022
    Publication date: October 6, 2022
    Inventors: Hanh Nguyen, Thai Cheng Chua, Philip Allan Kraus
  • Publication number: 20220254641
    Abstract: Embodiments disclosed herein include methods and apparatuses used to deposit graphene layers. In an embodiment, a method of depositing a graphene layer on a substrate comprises providing a substrate within a modular microwave plasma chamber, and flowing a carbon source and a hydrogen source into the modular microwave plasma chamber. In an embodiment, the method further comprises striking a plasma in the modular microwave plasma chamber, where a substrate temperature is below approximately 400° C., and depositing the graphene layer on the substrate.
    Type: Application
    Filed: February 11, 2021
    Publication date: August 11, 2022
    Inventors: Thai Cheng Chua, Christian Valencia, Chikuang Wang, Bencherki Mebarki, Hanh Nguyen, Philip Allan Kraus
  • Publication number: 20220244205
    Abstract: Embodiments disclosed herein include gas concentration sensors, and methods of using such gas concentration sensors. In an embodiment, a gas concentration sensor comprises a first electrode. In an embodiment the first electrode comprises first fingers. In an embodiment, the gas concentration sensor further comprises a second electrode. In an embodiment, the second electrode comprises second fingers that are interdigitated with the first fingers.
    Type: Application
    Filed: February 3, 2021
    Publication date: August 4, 2022
    Inventors: Xiaopu Li, Kallol Bera, Yaoling Pan, Kelvin Chan, Amir Bayati, Philip Allan Kraus, Kenric T. Choi, William John Durand
  • Patent number: 11404248
    Abstract: Embodiments include a modular microwave source. In an embodiment, the modular microwave source comprises a voltage control circuit, a voltage controlled oscillator, where an output voltage from the voltage control circuit drives oscillation in the voltage controlled oscillator. The modular microwave source may also include a solid state microwave amplification module coupled to the voltage controlled oscillator. In an embodiment, the solid state microwave amplification module amplifies an output from the voltage controlled oscillator. The modular microwave source may also include an applicator coupled to the solid state microwave amplification module, where the applicator is a dielectric resonator.
    Type: Grant
    Filed: August 14, 2020
    Date of Patent: August 2, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Philip Allan Kraus, Thai Cheng Chua
  • Publication number: 20220227622
    Abstract: Methods are provided for manufacturing well-controlled, solid-state nanopores and arrays thereof. In one aspect, methods for manufacturing nanopores and arrays thereof exploit a physical seam. One or more etch pits are formed in a topside of a substrate and one or more trenches, which align with the one or more etch pits, are formed in a backside of the substrate. An opening is formed between the one or more etch pits and the one or more trenches. A dielectric material is then formed over the substrate to fill the opening. Contacts are then disposed on the topside and the backside of the substrate and a voltage is applied from the topside to the backside, or vice versa, through the dielectric material to form a nanopore. In another aspect, the nanopore is formed at or near the center of the opening at a seam, which is formed in the dielectric material.
    Type: Application
    Filed: April 5, 2022
    Publication date: July 21, 2022
    Inventors: Philip Allan KRAUS, Joseph R. JOHNSON
  • Patent number: 11393661
    Abstract: Embodiments described herein include a processing tool that comprises a processing chamber, a chuck for supporting a substrate in the processing chamber, a dielectric window forming a portion of the processing chamber, and a modular high-frequency emission source. In an embodiment, the modular high-frequency emission source comprises a plurality of high-frequency emission modules. In an embodiment, each high-frequency emission module comprises, an oscillator module, amplification module, and an applicator. In an embodiment, the amplification module is coupled to the oscillator module. In an embodiment, the applicator is coupled to the amplification module. In an embodiment, the applicator is positioned proximate to the dielectric window.
    Type: Grant
    Filed: April 20, 2018
    Date of Patent: July 19, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Hanh Nguyen, Thai Cheng Chua, Philip Allan Kraus
  • Patent number: 11368003
    Abstract: Embodiments of the present disclosure generally relate to a unitary electrical conduit that includes a central conductor, a socket coupled to a first end of the central conductor, a male insert coupled to a second end of the central conductor a dielectric sheath surrounding the central conductor, and an outer conductor surrounding the dielectric sheath, wherein a substantially 90 degree bend is formed along a length thereof.
    Type: Grant
    Filed: June 3, 2020
    Date of Patent: June 21, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Philip Allan Kraus, Anantha K. Subramani
  • Patent number: 11325827
    Abstract: Methods are provided for manufacturing well-controlled, solid-state nanopores and arrays thereof. In one aspect, methods for manufacturing nanopores and arrays thereof exploit a physical seam. One or more etch pits are formed in a topside of a substrate and one or more trenches, which align with the one or more etch pits, are formed in a backside of the substrate. An opening is formed between the one or more etch pits and the one or more trenches. A dielectric material is then formed over the substrate to fill the opening. Contacts are then disposed on the topside and the backside of the substrate and a voltage is applied from the topside to the backside, or vice versa, through the dielectric material to form a nanopore. In another aspect, the nanopore is formed at or near the center of the opening at a seam, which is formed in the dielectric material.
    Type: Grant
    Filed: August 5, 2020
    Date of Patent: May 10, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Philip Allan Kraus, Joseph R. Johnson
  • Patent number: 11257698
    Abstract: Embodiments include a real time etch rate sensor and methods of for using a real time etch rate sensor. In an embodiment, the real time etch rate sensor includes a resonant system and a conductive housing. The resonant system may include a resonating body, a first electrode formed over a first surface of the resonating body, a second electrode formed over a second surface of the resonating body, and a sacrificial layer formed over the first electrode. In an embodiment, at least a portion of the first electrode is not covered by the sacrificial layer. In an embodiment, the conductive housing may secure the resonant system. Additionally, the conductive housing contacts the first electrode, and at least a portion of an interior edge of the conductive housing may be spaced away from the sacrificial layer.
    Type: Grant
    Filed: August 19, 2020
    Date of Patent: February 22, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Philip Allan Kraus, Timothy Joseph Franklin
  • Patent number: 11217443
    Abstract: Embodiments disclosed herein include methods of forming high quality silicon nitride films. In an embodiment, a method of depositing a film on a substrate may comprise forming a silicon nitride film over a surface of the substrate in a first processing volume with a deposition process, and treating the silicon nitride film in a second processing volume, wherein treating the silicon nitride film comprises exposing the film to a plasma induced by a modular high-frequency plasma source. In an embodiment, a sheath potential of the plasma is less than 100 V, and a power density of the high-frequency plasma source is approximately 5 W/cm2 or greater, approximately 10 W/cm2 or greater, or approximately 20 W/cm2 or greater.
    Type: Grant
    Filed: November 6, 2019
    Date of Patent: January 4, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Vinayak Veer Vats, Hang Yu, Philip Allan Kraus, Sanjay G. Kamath, William John Durand, Lakmal Charidu Kalutarage, Abhijit B. Mallick, Changling Li, Deenesh Padhi, Mark Joseph Saly, Thai Cheng Chua, Mihaela A. Balseanu
  • Publication number: 20210391149
    Abstract: Embodiments disclosed herein include a modular microwave source array. In an embodiment, a housing assembly for the source array comprises a first conductive layer, wherein the first conductive layer comprises a first coefficient of thermal expansion (CTE), and a second conductive layer over the first conductive layer, wherein the second conductive layer comprises a second CTE that is different than the first CTE. In an embodiment, the housing assembly further comprises a plurality of openings through the housing assembly, where each opening passes through the first conductive layer and the second conductive layer.
    Type: Application
    Filed: June 10, 2020
    Publication date: December 16, 2021
    Inventors: Philip Allan Kraus, Robert Moore, James Carducci, Richard Fovell, Sathya Swaroop Ganta, Karthikeyan Balaraman, Silverst Rodrigues
  • Publication number: 20210391156
    Abstract: Embodiments disclosed herein include a cleaning module for the exhaust line of a chamber. In an embodiment, a mobile cleaning module comprises a chamber where the chamber comprises a first opening and a second opening. In an embodiment, the cleaning module further comprises a lid to seal the first opening. In an embodiment, the lid comprises a dielectric plate, a dielectric resonator coupled to the dielectric plate, a monopole antenna positioned in a hole into the dielectric resonator, and a conductive layer surrounding the dielectric resonator.
    Type: Application
    Filed: June 10, 2020
    Publication date: December 16, 2021
    Inventors: Kelvin Chan, Philip Allan Kraus, Thai Cheng Chua, Hanh Nguyen, Anantha Subramani
  • Publication number: 20210327685
    Abstract: Embodiments include a modular high-frequency emission source. In an embodiment, the modular high-frequency emission source includes a plurality of high-frequency emission modules, where each high-frequency emission module comprises and oscillator module, an amplification module, and an applicator. In an embodiment the oscillator module comprises a voltage control circuit and a voltage controlled oscillator. In an embodiment, the amplification module is coupled to the oscillator module. In an embodiment, the applicator is coupled to the amplification module. In an embodiment, each high-frequency emission module includes a different oscillator module.
    Type: Application
    Filed: June 25, 2021
    Publication date: October 21, 2021
    Inventors: Thai Cheng Chua, Christian Amormino, Hanh Nguyen, Kallol Bera, Philip Allan Kraus
  • Publication number: 20210313213
    Abstract: A method and apparatus for biasing regions of a substrate in a plasma-assisted processing chamber are provided. Biasing of the substrate, or regions thereof, increases the potential difference between the substrate and a plasma formed in the processing chamber thereby accelerating ions from the plasma towards the active surfaces of the substrate regions. A plurality of bias electrodes herein are spatially arranged across the substrate support in a pattern that is advantageous for managing uniformity of processing results across the substrate.
    Type: Application
    Filed: June 21, 2021
    Publication date: October 7, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Philip Allan KRAUS, Thai Cheng CHUA, Jaeyong CHO