Patents by Inventor Philip Homewood

Philip Homewood has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10850249
    Abstract: A sealing assembly creating a sealed flow path between fluid ducts. The seal assembly comprises a housing and a tubular element within the housing providing a fluid conduit between the fluid ducts. Two sealing elements each have an internal sealing face sealably engaged with the tube and an external face for sealing, in use, with a respective fluid duct. At least one of the sealing elements is slidable with respect to the tubes. A support is slidably retained by the housing, surrounds one end of the tube and supports one of the slidable sealing elements on the side of the sealing element opposite to its external face. A resilient element within the housing biases the support so as to urge the two sealing elements apart.
    Type: Grant
    Filed: December 14, 2017
    Date of Patent: December 1, 2020
    Assignee: BLACKTRACE HOLDINGS LIMITED
    Inventors: Philip Homewood, Hannah Kenyon
  • Patent number: 10597628
    Abstract: A device (10), for receiving fluid, having a block (12) which comprises: a chamber (14) comprising a top and a bottom; and a chamber outlet (20) at the bottom of the chamber (14). The block (12) further comprises a magnetic stirrer (30) suspended in the chamber (14), wherein the magnetic stirrer (30) terminates above the bottom of the chamber (14), and is rotatably supported inside the chamber (14). The block (12) further comprises a microchannel (26) fluidly connected to the chamber (14) via the chamber outlet (20). The microchannel (26) may be fluidly connected to a downstream reservoir (24), and an upstream reservoir (22). The device (10) is suited for mixing a bead/cell suspension and an oil-based fluid in the microchannel (26) such that they form an emulsion which comprises a plurality of droplets, wherein at least one of the droplets encapsulates a bead/cell.
    Type: Grant
    Filed: October 10, 2017
    Date of Patent: March 24, 2020
    Assignee: Blacktrace Holdings Ltd.
    Inventors: Mark Gilligan, Tim Atkins, Andrew Lovatt, Joe Fiabane, Philip Homewood, Mike Hawes
  • Publication number: 20180169604
    Abstract: A sealing assembly creating a sealed flow path between fluid ducts. The seal assembly comprises a housing and a tubular element within the housing providing a fluid conduit between the fluid ducts. Two sealing elements each have an internal sealing face sealably engaged with the tube and an external face for sealing, in use, with a respective fluid duct. At least one of the sealing elements is slidable with respect to the tubes. A support is slidably retained by the housing, surrounds one end of the tube and supports one of the slidable sealing elements on the side of the sealing element opposite to its external face. A resilient element within the housing biases the support so as to urge the two sealing elements apart.
    Type: Application
    Filed: December 14, 2017
    Publication date: June 21, 2018
    Inventors: Philip HOMEWOOD, Hannah Kenyon
  • Publication number: 20180105789
    Abstract: A device (10), for receiving fluid, having a block (12) which comprises: a chamber (14) comprising a top and a bottom; and a chamber outlet (20) at the bottom of the chamber (14). The block (12) further comprises a magnetic stirrer (30) suspended in the chamber (14), wherein the magnetic stirrer (30) terminates above the bottom of the chamber (14), and is rotatably supported inside the chamber (14). The block (12) further comprises a microchannel (26) fluidly connected to the chamber (14) via the chamber outlet (20). The microchannel (26) may be fluidly connected to a downstream reservoir (24), and an upstream reservoir (22). The device (10) is suited for mixing a bead/cell suspension and an oil-based fluid in the microchannel (26) such that they form an emulsion which comprises a plurality of droplets, wherein at least one of the droplets encapsulates a bead/cell.
    Type: Application
    Filed: October 10, 2017
    Publication date: April 19, 2018
    Inventors: Mark Gilligan, Tim Atkins, Andrew Lovatt, Joe Fiabane, Philip Homewood, Mike Hawes
  • Publication number: 20170165632
    Abstract: A reactor device (100) for reaction fluid comprising a reaction vessel (102) comprising: an end cap (104) comprising at least one passage (112) for the reaction fluid; and at least one tube (116) which extends through the reaction vessel (102). The reaction vessel is operable to receive a control fluid outside the at least one tube (116) for controlling the temperature inside the at least one tube (116). A manifold (200) is connectable to the end cap (104) and comprises at least one channel (206) for reaction fluid. An outlet (208) from the manifold (200) is in fluid communication with the tube (116). The end cap (104) has a thermal conductivity of greater than 1 watt per square meter kelvin to provide a thermal coupling between the control fluid and the manifold (200).
    Type: Application
    Filed: December 7, 2016
    Publication date: June 15, 2017
    Inventors: Philip Homewood, Mark Gilligan, Andrew Lovatt, Paul Crisp, Ben Taylor, Hannah Kenyon, Mike Hawes
  • Publication number: 20160264924
    Abstract: Methods and systems are provided for merging a droplet with a volume of fluid in a microfluidic system. In particular, the methods of the invention use a microfluidic structure designed to merge a fluid with a droplet in order to dilute, add volume, or add selected reagents, biological materials, or synthetic materials to a droplet. Also provided are related systems and methods for cell lysis.
    Type: Application
    Filed: May 20, 2016
    Publication date: September 15, 2016
    Inventors: David Scott Johnson, Gary Withey, Philip Homewood, Timothy Atkins
  • Publication number: 20150125865
    Abstract: Methods and systems are provided for merging a droplet with a volume of fluid in a microfluidic system. In particular, the methods of the invention use a microfluidic structure designed to merge a fluid with a droplet in order to dilute, add volume, or add selected reagents, biological materials, or synthetic materials to a droplet. Also provided are related systems and methods for cell lysis.
    Type: Application
    Filed: December 20, 2012
    Publication date: May 7, 2015
    Inventors: David Scott Johnson, Gary Withey, Philip Homewood, Timothy Atkins
  • Publication number: 20060150385
    Abstract: An apparatus (10) for performing microfluidic processes comprising a base (50), a plurality of fluidic modules (20) releasably attached to the base (50), each fluidic module (20) comprising a fluid port (25) and a microfluidic manifold module (40) comprising a plurality of ports (45). A frame (70) is attached to the base (50) for releasably retaining the microfluidic manifold module (40), the frame (70) being moveable relatively to the base (50) to move the microfluidic manifold module (40) into contact with the fluidic modules (20) such that each fluid port (25) of the fluidic modules (20) aligns and seals with a respective port (45) on the microfluidic manifold module (40) thus completing a microfluidic circuit. A method for constructing and testing the apparatus (10) is also disclosed.
    Type: Application
    Filed: December 15, 2005
    Publication date: July 13, 2006
    Inventors: Mark Gilligan, Philip Homewood, Robert Ranford, Paul Crisp