Patents by Inventor Philip J. Angevine

Philip J. Angevine has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6844479
    Abstract: A process for the alkylation of paraffins with olefins includes contacting the paraffin with the olefin under alkylation conditions with a zeolite having an AAI number of at least about 1.0. In a preferred process isobutane is alkylated with cis-2-butene to produce a high octane (RON) gasoline product containing trimethylpentane isomers.
    Type: Grant
    Filed: April 24, 2003
    Date of Patent: January 18, 2005
    Assignee: ABB Lummus Global Inc.
    Inventors: Chuen Y. Yeh, Xingtao Gao, Philip J. Angevine
  • Patent number: 6793911
    Abstract: A method for making a zeolite includes impregnating a porous inorganic oxide with a liquid solution containing an inorganic micropore-forming directing agent. The amount of liquid solution is no more than about 100% of the pore volume of the porous inorganic oxide, and the concentration of the directing agent in the liquid solution ranges from 21% to about 60% by weight. The impregnated amorphous inorganic oxide is heated at a synthesis temperature of from about 50° C. to about 150° C. for a duration of time sufficient to form a zeolite-containing product. The method herein is advantageous for the transformation of a mesoporous or macroporous amorphous inorganic material to a composite structure containing the original mesoporous or macropores, but wherein at least some of the porous inorganic oxide material is converted to nanocrystalline zeolite, such as zeolite Y.
    Type: Grant
    Filed: February 5, 2002
    Date of Patent: September 21, 2004
    Assignee: ABB Lummus Global Inc.
    Inventors: Johannes Hendrik Koegler, Chuen Y. Yeh, Philip J. Angevine
  • Publication number: 20040181104
    Abstract: A dehydrogenation catalyst includes an organometallic pincer complex bonded to a mesoporous inorganic oxide support, the organometallic pincer complex possessing catalytic activity for alkyl group dehydrogenation. The pincer complex includes at least one element selected from Group VIII or Group IB of the Periodic Table of the elements, and at least one element selected from Group VA of the Periodic Table of the elements in each of two molecular arms, the Group VIII or Group IB element being bonded to each of the Group VA elements. The catalyst is advantageously employed in conjunction with catalytic distillation to permit the dehydrogenation of organic compounds at lower temperatures and at lower cost than conventional methods.
    Type: Application
    Filed: March 2, 2004
    Publication date: September 16, 2004
    Applicant: ABB Lummus Global Inc.
    Inventors: Chuen Y. Yeh, Zhiping Shan, Philip J. Angevine, Dinesh Gandhi
  • Publication number: 20040179996
    Abstract: Mesoporous aluminum oxides with high surface areas have been synthesized using inexpensive, small organic templating agents instead of surfactants. Optionally, some of the aluminum can be framework-substituted by one or more other elements. The material has high thermal stability and possesses a three-dimensionally randomly connected mesopore network with continuously tunable pore sizes. This material can be used as catalysts for dehydration, hydrotreating, hydrogenation, catalytic reforming, steam reforming, amination, Fischer-Tropsch synthesis and Diels-Alder synthesis, etc.
    Type: Application
    Filed: March 8, 2004
    Publication date: September 16, 2004
    Applicant: ABB Lummus Global Inc.
    Inventors: Zhiping Shan, Jacobus Cornelius Jansen, Chuen Y. Yeh, Philip J. Angevine, Thomas Maschmeyer
  • Publication number: 20040162454
    Abstract: A process for alkylation of a hydrocarbon compound includes providing a catalyst including a zeolite Y having a crystal size of no more than 100 nm, and reacting an alkylatable hydrocarbon with an alkylating agent in the presence of the catalyst under alkylation reaction conditions to provide a gasoline product having a Research Octane Number of over 99.5.
    Type: Application
    Filed: February 9, 2004
    Publication date: August 19, 2004
    Applicant: ABB Lummus Global Inc.
    Inventors: Xiangtao Gao, Johannes Hendrik Koegler, Lawrence L. Murrell, Philip J. Angevine
  • Publication number: 20040138051
    Abstract: A catalytic material includes microporous zeolites supported on a mesoporous inorganic oxide support. The microporous zeolite can include zeolite Beta, zeolite Y (including “ultra stable Y”—USY), mordenite, Zeolite L, ZSM-5, ZSM-11, ZSM-12, ZSM-20, Theta-1, ZSM-23, ZSM-34, ZSM-35, ZSM-48, SSZ-32, PSH-3, MCM-22, MCM-49, MCM-56, ITQ-1, ITQ-2, ITQ-4, ITQ-21, SAPO-5, SAPO-11, SAPO-37, Breck-6, ALPO4-5, etc. The mesoporous inorganic oxide can be e.g., silica or silicate. The catalytic material can be further modified by introducing some metals e.g. aluminum, titanium, molybdenum, nickel, cobalt, iron, tungsten, palladium and platinum. It can be used as catalysts for acylation, alkylation, dimerization, oligomerization, polymerization, hydrogenation, dehydrogenation, aromatization, isomerization, hydrotreating, catalytic cracking and hydrocracking reactions.
    Type: Application
    Filed: October 22, 2003
    Publication date: July 15, 2004
    Inventors: Zhiping Shan, Peter Wilhelm Gerhard Waller, Bowden George Maingay, Philip J. Angevine, Jacobus Cornelis Jansen, Chuen Y. Yeh, Thomas Maschmeyer, Frits M. Dautzenberg, Leonardo Marchese, Heloise de Oliveira Pastore
  • Publication number: 20040010176
    Abstract: A process for the alkylation of paraffins with olefins includes contacting the paraffin with the olefin under alkylation conditions with a zeolite having an AAI number of at least about 1.0. In a preferred process isobutane is alkylated with cis-2-butene to produce a high octane (RON) gasoline product containing trimethylpentane isomers.
    Type: Application
    Filed: April 24, 2003
    Publication date: January 15, 2004
    Inventors: Chuen Y. Yeh, Xingtao Gao, Philip J. Angevine
  • Patent number: 6676829
    Abstract: A method is provided for removing sulfur from an effluent produced by hydrotreating a hydrocarbon feed, said effluent having a heavy fraction containing polyaromatic sulfur compounds and a lighter fraction, said method comprising contacting the effluent with a noble metal containing hydrodearomatization catalyst on a support under super-atmospheric hydrogen pressure and reaction conditions sufficient to hydrogenate at least one ring of said polyaromatic sulfur compounds and thereby produce a product with a reduced sulfur content.
    Type: Grant
    Filed: December 8, 1999
    Date of Patent: January 13, 2004
    Assignee: Mobil Oil Corporation
    Inventors: Philip J. Angevine, Anna B. Gorshteyn, Larry A. Green, Yuk Mui Louie, David A. Pappal, Peter J. Owens, Richard J. Quann, Jolie A. Rhinehart
  • Publication number: 20040004020
    Abstract: A process for upgrading a hydrocarbon feedstock containing waxy components and having an end boiling point exceeding 650° F., which includes contacting the feedstock at superatmospheric hydrogen partial pressure with an isomerization dewaxing catalyst that includes ZSM-48 and contacting the feedstock with a hydrocracking catalyst to produce an upgraded product with a reduced wax content. Each catalyst is present in an amount sufficient to reduce the cloud point and the pour point of the feedstock at a conversion of greater than about 10%, and an overall distillate yield of greater than about 10% results from the process.
    Type: Application
    Filed: May 2, 2003
    Publication date: January 8, 2004
    Inventors: Michael T. Grove, Randall D. Partridge, Terry E. Helton, David A. Pappal, Philip J. Angevine, Dominick N. Mazzone
  • Patent number: 6652735
    Abstract: A process for isomerization dewaxing of a hydrocarbon feed which includes contacting the hydrocarbon feed with a large pore size, small crystal size, crystalline molecular sieve and an intermediate pore size, small crystal size, crystalline molecular sieve to produce a dewaxed product with a reduced pour point and a reduced cloud point. In a preferred embodiment, the feed is contacted with the molecular sieves sequentially, first with the large pore sieve followed by the intermediate pore sieve.
    Type: Grant
    Filed: April 26, 2001
    Date of Patent: November 25, 2003
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Thomas F. Degnan, Philip J. Angevine
  • Publication number: 20030188991
    Abstract: A process for treating organic compounds includes providing a composition which includes a substantially mesoporous structure of silica containing at least 97% by volume of pores having a pore size ranging from about 15 Å to about 30 Å and having a micropore volume of at least about 0.01 cc/g, wherein the mesoporous structure has incorporated therewith at least about 0.02% by weight of at least one catalytically and/or chemically active heteroatom selected from the group consisting of Al, Ti, V, Cr, Zn, Fe, Sn, Mo, Ga, Ni, Co, In, Zr, Mn, Cu, Mg, Pd, Pt and W, and the catalyst has an X-ray diffraction pattern with one peak at 0.3° to about 3.5° at 2&thgr;.
    Type: Application
    Filed: December 6, 2002
    Publication date: October 9, 2003
    Inventors: Zhiping Shan, Jacobus Cornelius Jansen, Chuen Y. Yeh, Philip J. Angevine, Thomas Maschmeyer
  • Publication number: 20030168379
    Abstract: A process for isomerization dewaxing of a hydrocarbon feed which includes contacting the hydrocarbon feed with a large pore size, small crystal size, crystalline molecular sieve and an intermediate pore size, small crystal size, crystalline molecular sieve to produce a dewaxed product with a reduced pour point and a reduced cloud point. In a preferred embodiment, the feed is contacted with the molecular sieves sequentially, first with the large pore sieve followed by the intermediate pore sieve.
    Type: Application
    Filed: April 26, 2001
    Publication date: September 11, 2003
    Inventors: Thomas F. Degnan, Philip J. Angevine
  • Publication number: 20030147805
    Abstract: A method for making a zeolite includes impregnating a porous inorganic oxide with a liquid solution containing an inorganic micropore-forming directing agent. The amount of liquid solution is no more than about 100% of the pore volume of the porous inorganic oxide, and the concentration of the directing agent in the liquid solution ranges from about 21% to about 60% by weight. The impregnated amorphous inorganic oxide is heated at a synthesis temperature of from about 50° C. to about 150° C. for a duration of time sufficient to form a zeolite-containing product. The method herein is advantageous for the transformation of a mesoporous or macroporous amorphous inorganic material to a composite structure containing the original mesopores or macropores, but wherein at least some of the porous inorganic oxide material is converted to nanocrystalline zeolite, such as zeolite Y.
    Type: Application
    Filed: February 5, 2002
    Publication date: August 7, 2003
    Inventors: Johannes Hendrik Koegler, Chuen Y. Yeh, Philip J. Angevine
  • Patent number: 6500329
    Abstract: A two stage process useful for cetane upgrading of diesel fuels. More particularly, the invention relates to a process for selective naphthenic ring-opening utilizing an extremely low acidic distillate selective catalyst having highly dispersed Pt. The process is a two stage process wherein the first stage is a hydrotreating stage for removing sulfur from the feed and the second stage is the selective ring-opening stage.
    Type: Grant
    Filed: October 16, 2001
    Date of Patent: December 31, 2002
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Ying-Yen P. Tsao, Tracy J. Huang, Philip J. Angevine
  • Publication number: 20020121457
    Abstract: A two stage process useful for cetane upgrading of diesel fuels. More particularly, the invention relates to a process for selective naphthenic ring-opening utilizing an extremely low acidic distillate selective catalyst having highly dispersed Pt. The process is a two stage process wherein the first stage is a hydrotreating stage for removing sulfur from the feed and the second stage is the selective ring-opening stage.
    Type: Application
    Filed: October 16, 2001
    Publication date: September 5, 2002
    Inventors: Ying-Yen P. Tsao, Tracy J. Huang, Philip J. Angevine
  • Patent number: 6362123
    Abstract: A hydrocracking catalyst is provided that includes a crystalline molecular sieve material component having a faujasite structure and an alpha acidity of less than 1, preferably 0.3 or less, and a dispersed Group VIII noble metal component. The extremely low acidity allows selective hydrocracking of the aromatic and naphthenic species in a feedstock, while limiting the cracking of paraffins. The catalyst produces improved yields of products, such as diesel fuel, at high conversion rates and with high cetane values.
    Type: Grant
    Filed: December 30, 1998
    Date of Patent: March 26, 2002
    Assignee: Mobil Oil Corporation
    Inventors: Ying-Yen P. Tsao, Tracy J. Huang, Philip J. Angevine
  • Publication number: 20010027937
    Abstract: A process, preferably in a counter-current configuration, for selectively cracking carbon-carbon bonds of naphthenic species using a low acidic catalyst, preferably having a crystalline molecular sieve component and carrying a Group VIII noble metal. The diesel fuel products are higher in cetane number and diesel yield.
    Type: Application
    Filed: May 16, 2001
    Publication date: October 11, 2001
    Inventors: Ying-Yen P. Tsao, Tracy J. Huang, Philip J. Angevine
  • Patent number: 6241876
    Abstract: A process, preferably in a counter-current configuration, for selectively cracking carbon-carbon bonds of naphthenic species using a low acidic catalyst, preferably having a crystalline molecular sieve component and carrying a Group VIII noble metal. The diesel fuel products are higher in cetane number and diesel yield.
    Type: Grant
    Filed: June 11, 1999
    Date of Patent: June 5, 2001
    Assignee: Mobil Oil Corporation
    Inventors: Ying-Yen P. Tsao, Tracy J. Huang, Philip J. Angevine
  • Patent number: 6210563
    Abstract: A process is provided for selectively producing diesel fuel with increased cetane number from a hydrocarbon feedstock. The process includes contacting the feedstock with a catalyst which has a large pore crystalline molecular sieve material component having a faujasite structure and alpha acidity of less than 1, preferably about 0.3 or less. The catalyst also contains a dispersed Group VIII noble metal component which catalyzes the hydrogenation/hydrocracking of the aromatic and naphthenic species in the feedstock.
    Type: Grant
    Filed: December 30, 1998
    Date of Patent: April 3, 2001
    Assignee: Mobil Oil Corporation
    Inventors: Ying-Yen P. Tsao, Tracy J. Huang, Philip J. Angevine
  • Patent number: 6150575
    Abstract: Diesel fuels which have good ignition qualities, good combustion emission performance and good low temperature characteristics are characterized by a cetane number of at least 45, a total aromatics content of 10 to 15 wt. pct., a polynuclear aromatics content of less than 11 wt. pct., a sulfur content of not more than 50 ppmw, a total nitrogen content (from all sources) of not more than 100 ppmw, and excellent low temperature flow properties as manifested by a pour point not higher than -12.degree. C. and a cloud point not higher than -10.degree. C.
    Type: Grant
    Filed: October 4, 1999
    Date of Patent: November 21, 2000
    Assignee: Mobil Oil Corporation
    Inventors: Philip J. Angevine, Joan C. Axelrod, Alan M. Horowitz, Dennis H. Hoskin