Patents by Inventor Philip J. Sieh

Philip J. Sieh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11994865
    Abstract: An autonomous navigation system which enables autonomous navigation of a vehicle along one or more portions of a driving route based on monitoring, at the vehicle, various features of the route as the vehicle is manually navigated along the route to develop a characterization of the route. The characterization is progressively updated with repeated manual navigations along the route, and autonomous navigation of the route is enabled when a confidence indicator of the characterization meets a threshold indication. Characterizations can be updated in response to the vehicle encountering changes in the route and can include a set of driving rules associated with the route, where the driving rules are developed based on monitoring the navigation of one or more vehicles of the route. Characterizations can be uploaded to a remote system which processes data to develop and refine route characterizations and provide characterizations to one or more vehicles.
    Type: Grant
    Filed: July 29, 2022
    Date of Patent: May 28, 2024
    Assignee: Apple Inc.
    Inventors: Ahmad Al-Dahle, Matthew E Last, Philip J. Sieh, Benjamin Lyon
  • Publication number: 20220373338
    Abstract: An autonomous navigation system which enables autonomous navigation of a vehicle along one or more portions of a driving route based on monitoring, at the vehicle, various features of the route as the vehicle is manually navigated along the route to develop a characterization of the route. The characterization is progressively updated with repeated manual navigations along the route, and autonomous navigation of the route is enabled when a confidence indicator of the characterization meets a threshold indication. Characterizations can be updated in response to the vehicle encountering changes in the route and can include a set of driving rules associated with the route, where the driving rules are developed based on monitoring the navigation of one or more vehicles of the route. Characterizations can be uploaded to a remote system which processes data to develop and refine route characterizations and provide characterizations to one or more vehicles.
    Type: Application
    Filed: July 29, 2022
    Publication date: November 24, 2022
    Applicant: Apple Inc.
    Inventors: Ahmad Al-Dahle, Matthew E Last, Philip J. Sieh, Benjamin Lyon
  • Patent number: 11402221
    Abstract: Some embodiments provide an autonomous navigation system which enables autonomous navigation of a vehicle along one or more portions of a driving route based on monitoring, at the vehicle, various features of the route as the vehicle is manually navigated along the route to develop a characterization of the route. The characterization is progressively updated with repeated manual navigations along the route, and autonomous navigation of the route is enabled when a confidence indicator of the characterization meets a threshold indication. Characterizations can be updated in response to the vehicle encountering changes in the route and can include a set of driving rules associated with the route, where the driving rules are developed based on monitoring the navigation of one or more vehicles of the route. Characterizations can be uploaded to a remote system which processes data to develop and refine route characterizations and provide characterizations to one or more vehicles.
    Type: Grant
    Filed: October 18, 2019
    Date of Patent: August 2, 2022
    Assignee: Apple Inc.
    Inventors: Ahmad Al-Dahle, Matthew E. Last, Philip J. Sieh, Benjamin Lyon
  • Publication number: 20200049515
    Abstract: Some embodiments provide an autonomous navigation system which enables autonomous navigation of a vehicle along one or more portions of a driving route based on monitoring, at the vehicle, various features of the route as the vehicle is manually navigated along the route to develop a characterization of the route. The characterization is progressively updated with repeated manual navigations along the route, and autonomous navigation of the route is enabled when a confidence indicator of the characterization meets a threshold indication. Characterizations can be updated in response to the vehicle encountering changes in the route and can include a set of driving rules associated with the route, where the driving rules are developed based on monitoring the navigation of one or more vehicles of the route. Characterizations can be uploaded to a remote system which processes data to develop and refine route characterizations and provide characterizations to one or more vehicles.
    Type: Application
    Filed: October 18, 2019
    Publication date: February 13, 2020
  • Patent number: 10451425
    Abstract: Some embodiments provide an autonomous navigation system which enables autonomous navigation of a vehicle along one or more portions of a driving route based on monitoring, at the vehicle, various features of the route as the vehicle is manually navigated along the route to develop a characterization of the route. The characterization is progressively updated with repeated manual navigations along the route, and autonomous navigation of the route is enabled when a confidence indicator of the characterization meets a threshold indication. Characterizations can be updated in response to the vehicle encountering changes in the route and can include a set of driving rules associated with the route, where the driving rules are developed based on monitoring the navigation of one or more vehicles of the route. Characterizations can be uploaded to a remote system which processes data to develop and refine route characterizations and provide characterizations to one or more vehicles.
    Type: Grant
    Filed: December 4, 2015
    Date of Patent: October 22, 2019
  • Publication number: 20170363430
    Abstract: Some embodiments provide an autonomous navigation system which enables autonomous navigation of a vehicle along one or more portions of a driving route based on monitoring, at the vehicle, various features of the route as the vehicle is manually navigated along the route to develop a characterization of the route. The characterization is progressively updated with repeated manual navigations along the route, and autonomous navigation of the route is enabled when a confidence indicator of the characterization meets a threshold indication. Characterizations can be updated in response to the vehicle encountering changes in the route and can include a set of driving rules associated with the route, where the driving rules are developed based on monitoring the navigation of one or more vehicles of the route. Characterizations can be uploaded to a remote system which processes data to develop and refine route characterizations and provide characterizations to one or more vehicles.
    Type: Application
    Filed: December 4, 2015
    Publication date: December 21, 2017
  • Patent number: 7802471
    Abstract: A liquid level sensor device (10) includes a liquid level sensor element (14), a capacitance-to-voltage converter (16), and a controller (18). The liquid level sensor element (14) comprises (i) at least two sets of N conductive electrodes (22) and (ii) M sense lines (S1-S7), where M is greater than or equal to N within each set of the at least two sets of conductive electrodes. Each of the M sense lines couples to select ones of the N conductive electrodes of the at least two sets of conductive electrodes to form a number of L sets of parallel coupled conductive electrodes, where L equals M. The capacitance-to-voltage converter (16) periodically measures a capacitance of the L sets of parallel coupled conductive electrodes for each of the M sense lines. The controller (18) establishes initial measured baseline capacitance values for each of the L sets of parallel coupled conductive electrodes and an initial liquid level height value.
    Type: Grant
    Filed: December 28, 2007
    Date of Patent: September 28, 2010
  • Publication number: 20090165552
    Abstract: A liquid level sensor device (10) includes a liquid level sensor element (14), a capacitance-to-voltage converter (16), and a controller (18). The liquid level sensor element (14) comprises (i) at least two sets of N conductive electrodes (22) and (ii) M sense lines (S1-S7), where M is greater than or equal to N within each set of the at least two sets of conductive electrodes. Each of the M sense lines couples to select ones of the N conductive electrodes of the at least two sets of conductive electrodes to form a number of L sets of parallel coupled conductive electrodes, where L equals M. The capacitance-to-voltage converter (16) periodically measures a capacitance of the L sets of parallel coupled conductive electrodes for each of the M sense lines. The controller (18) establishes initial measured baseline capacitance values for each of the L sets of parallel coupled conductive electrodes and an initial liquid level height value.
    Type: Application
    Filed: December 28, 2007
    Publication date: July 2, 2009
  • Patent number: 7443174
    Abstract: “Electrical field (“E-field”) sensor systems that sense displacement or change in displacement of one body relative to another.” In general, the bodies 110, 112 are within an electrical field and displacement of a body causes a change in the E-field. A field sensor 290 detects this change and a processor 275 translates it to a change in position of the displaced body 110. The E-fields are generated by electrodes (or an electrode and a ground member) that generate the E-field. The systems include detectors 240 that detect changes in the E-field, such as capacitance, and transmit these to the processor 275.
    Type: Grant
    Filed: April 6, 2006
    Date of Patent: October 28, 2008
  • Patent number: 7432725
    Abstract: The present disclosure provides several systems. In general, it provides E-field sensor systems that utilize at least one electrode 100 adapted for creating an E-field in an area 210 within a detection volume where fluid presence 400 or presence of a solid body 300 is to be detected. The electrical field sensor is configured to generate a detected signal responsive to a change in capacitance of the electric field, and is communicatively coupled to the electrode 100. In addition, a processor 275 is configured to determine a quantitative measure of a fluid or solid body within the detection volume in accordance with a capacitive relationship with the detection volume. Described are examples of the system for fluid presence detection, fluid level measurement and measurement of proximity to a solid object.
    Type: Grant
    Filed: March 15, 2006
    Date of Patent: October 7, 2008