Patents by Inventor Philip Keller

Philip Keller has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240111328
    Abstract: Programmable control devices that rely on time-of-day accuracy maintain that accuracy by determining their location via a global positioning system, recording and timestamping continually measured ambient light via a daylight sensor and real-time clock (RTC) of the programmable control device, determining a mid-darkness time point, comparing that mid-darkness time point with a reference mid-darkness time point for the same location for the same day of the year, and then adjusting the RTC of the programmable control device as necessary. Methods of maintaining time of day in a programmable control device are also provided, as are other aspects.
    Type: Application
    Filed: September 28, 2023
    Publication date: April 4, 2024
    Inventors: Robert W. Hamlin, Philip S. Gross, Richard L. Westrick, JR., John Keller
  • Publication number: 20220340307
    Abstract: Systems, devices, and methods for precision boom deployment are provided in accordance with various embodiments. The tools and techniques provided may have space and/or terrestrial applications. Some embodiments include a boom deployment system that may include a furlable boom. Some embodiments include: boom reinforcement devices, end fitting devices, contoured support devices, edge support devices, spiral harness devices, latch devices, combined boom spool and tension drive devices, and/or rotary encoder devices. Some embodiments may utilize a composite slit-tube boom. Some embodiments utilize a furlable boom that may be fabricated with curvature along its length.
    Type: Application
    Filed: April 4, 2022
    Publication date: October 27, 2022
    Inventors: William Brad Hensley, Philip Keller, William H. Francis, Bruce L. Davis, Kellie A. Craven, Thomas J. Rose, Mark S. Lake
  • Patent number: 11459128
    Abstract: Methods, systems, and devices for foldable tube with unitary hinge are provided in accordance with various embodiments. Some embodiments include a device that may include one or more foldable tube sections configured to facilitate the deployment of an object with respect to an end portion of at least one of the one or more foldable tube sections; each of the one or more foldable tube sections may include one or more unitary hinge regions. The unitary hinge regions may include one or more longitudinal hinge regions configured to enable folding that is transverse to a primary axis of a respective foldable tube section. The unitary hinge regions may include a lateral hinge region configured to enable flattening that is parallel to a primary axis of a respective foldable tube section. Some embodiments may include a wire harness disposed within an interior portion of one or more foldable tube sections.
    Type: Grant
    Filed: October 10, 2019
    Date of Patent: October 4, 2022
    Assignee: Roccor, LLC
    Inventors: Philip Keller, William Francis, Tayler Thomas, Thomas Murphey, Todd Whitaker
  • Patent number: 11292616
    Abstract: Systems, devices, and methods for precision boom deployment are provided in accordance with various embodiments. The tools and techniques provided may have space and/or terrestrial applications. Some embodiments include a boom deployment system that may include a furlable boom. Some embodiments include: boom reinforcement devices, end fitting devices, contoured support devices, edge support devices, spiral harness devices, latch devices, combined boom spool and tension drive devices, and/or rotary encoder devices. Some embodiments may utilize a composite slit-tube boom. Some embodiments utilize a furlable boom that may be fabricated with curvature along its length.
    Type: Grant
    Filed: April 5, 2020
    Date of Patent: April 5, 2022
    Assignee: Roccor, LLC
    Inventors: William Brad Hensley, Philip Keller, William H. Francis, Bruce L. Davis, Kellie A. Craven, Thomas J. Rose, Mark S. Lake
  • Patent number: 11035023
    Abstract: A method of recovering metals from electronic waste comprises providing a powder comprising electronic waste in at least a first reactor and a second reactor and providing an electrolyte comprising at least ferric ions in an electrochemical cell in fluid communication with the first reactor and the second reactor. The method further includes contacting the powders within the first reactor and the second reactor with the electrolyte to dissolve at least one base metal from each reactor into the electrolyte and reduce at least some of the ferric ions to ferrous ions. The ferrous ions are oxidized at an anode of the electrochemical cell to regenerate the ferric ions. The powder within the second reactor comprises a higher weight percent of the at least one base metal than the powder in the first reactor. Additional methods of recovering metals from electronic waste are also described, as well as an apparatus of recovering metals from electronic waste.
    Type: Grant
    Filed: July 29, 2019
    Date of Patent: June 15, 2021
    Assignee: Battelle Energy Alliance, LLC
    Inventors: Tedd E. Lister, Jacob A. Parkman, Luis A. Diaz Aldana, Gemma Clark, Eric J. Dufek, Philip Keller
  • Publication number: 20200369411
    Abstract: Systems, devices, and methods for precision boom deployment are provided in accordance with various embodiments. The tools and techniques provided may have space and/or terrestrial applications. Some embodiments include a boom deployment system that may include a furlable boom. Some embodiments include: boom reinforcement devices, end fitting devices, contoured support devices, edge support devices, spiral harness devices, latch devices, combined boom spool and tension drive devices, and/or rotary encoder devices. Some embodiments may utilize a composite slit-tube boom. Some embodiments utilize a furlable boom that may be fabricated with curvature along its length.
    Type: Application
    Filed: April 5, 2020
    Publication date: November 26, 2020
    Inventors: William Brad Hensley, Philip Keller, William H. Francis, Bruce L. Davis, Kellie A. Craven, Thomas J. Rose, Mark S. Lake
  • Publication number: 20200223563
    Abstract: Methods, systems, and devices for foldable tube with unitary hinge are provided in accordance with various embodiments. Some embodiments include a device that may include one or more foldable tube sections configured to facilitate the deployment of an object with respect to an end portion of at least one of the one or more foldable tube sections; each of the one or more foldable tube sections may include one or more unitary hinge regions. The unitary hinge regions may include one or more longitudinal hinge regions configured to enable folding that is transverse to a primary axis of a respective foldable tube section. The unitary hinge regions may include a lateral hinge region configured to enable flattening that is parallel to a primary axis of a respective foldable tube section. Some embodiments may include a wire harness disposed within an interior portion of one or more foldable tube sections.
    Type: Application
    Filed: October 10, 2019
    Publication date: July 16, 2020
    Inventors: Philip Keller, William Francis, Tayler Thomas, Thomas Murphey, Todd Whitaker
  • Patent number: 10611502
    Abstract: Systems, devices, and methods for precision boom deployment are provided in accordance with various embodiments. The tools and techniques provided may have space and/or terrestrial applications. Some embodiments include a boom deployment system that may include a furlable boom. Some embodiments include: boom reinforcement devices, end fitting devices, contoured support devices, edge support devices, spiral harness devices, latch devices, combined boom spool and tension drive devices, and/or rotary encoder devices. Some embodiments may utilize a composite slit-tube boom. Some embodiments utilize a furlable boom that may be fabricated with curvature along its length.
    Type: Grant
    Filed: October 20, 2017
    Date of Patent: April 7, 2020
    Assignee: Roccor, LLC
    Inventors: William Brad Hensley, Philip Keller, William H. Francis, Bruce L. Davis, Kellie A. Craven, Thomas J. Rose, Mark S. Lake
  • Publication number: 20190352742
    Abstract: A method of recovering metals from electronic waste comprises providing a powder comprising electronic waste in at least a first reactor and a second reactor and providing an electrolyte comprising at least ferric ions in an electrochemical cell in fluid communication with the first reactor and the second reactor. The method further includes contacting the powders within the first reactor and the second reactor with the electrolyte to dissolve at least one base metal from each reactor into the electrolyte and reduce at least some of the ferric ions to ferrous ions. The ferrous ions are oxidized at an anode of the electrochemical cell to regenerate the ferric ions. The powder within the second reactor comprises a higher weight percent of the at least one base metal than the powder in the first reactor. Additional methods of recovering metals from electronic waste are also described, as well as an apparatus of recovering metals from electronic waste.
    Type: Application
    Filed: July 29, 2019
    Publication date: November 21, 2019
    Inventors: Tedd E. Lister, Jacob A. Parkman, Luis A. Diaz Aldana, Gemma Clark, Eric J. Dufek, Philip Keller
  • Patent number: 10378081
    Abstract: A method of recovering metals from electronic waste comprises providing a powder comprising electronic waste in at least a first reactor and a second reactor and providing an electrolyte comprising at least ferric ions in an electrochemical cell in fluid communication with the first reactor and the second reactor. The method further includes contacting the powders within the first reactor and the second reactor with the electrolyte to dissolve at least one base metal from each reactor into the electrolyte and reduce at least some of the ferric ions to ferrous ions. The ferrous ions are oxidized at an anode of the electrochemical cell to regenerate the ferric ions. The powder within the second reactor comprises a higher weight percent of the at least one base metal than the powder in the first reactor. Additional methods of recovering metals from electronic waste are also described, as well as an apparatus of recovering metals from electronic waste.
    Type: Grant
    Filed: August 30, 2017
    Date of Patent: August 13, 2019
    Assignee: Battelle Energy Alliance, LLC
    Inventors: Tedd E. Lister, Jacob A. Parkman, Luis A. Diaz Aldana, Gemma Clark, Eric J. Dufek, Philip Keller
  • Publication number: 20180111703
    Abstract: Systems, devices, and methods for precision boom deployment are provided in accordance with various embodiments. The tools and techniques provided may have space and/or terrestrial applications. Some embodiments include a boom deployment system that may include a furlable boom. Some embodiments include: boom reinforcement devices, end fitting devices, contoured support devices, edge support devices, spiral harness devices, latch devices, combined boom spool and tension drive devices, and/or rotary encoder devices. Some embodiments may utilize a composite slit-tube boom. Some embodiments utilize a furlable boom that may be fabricated with curvature along its length.
    Type: Application
    Filed: October 20, 2017
    Publication date: April 26, 2018
    Inventors: William Brad Hensley, Philip Keller, William H. Francis, Bruce L. Davis, Kellie A. Craven, Thomas J. Rose, Mark S. Lake
  • Publication number: 20170362681
    Abstract: A method of recovering metals from electronic waste comprises providing a powder comprising electronic waste in at least a first reactor and a second reactor and providing an electrolyte comprising at least ferric ions in an electrochemical cell in fluid communication with the first reactor and the second reactor. The method further includes contacting the powders within the first reactor and the second reactor with the electrolyte to dissolve at least one base metal from each reactor into the electrolyte and reduce at least some of the ferric ions to ferrous ions. The ferrous ions are oxidized at an anode of the electrochemical cell to regenerate the ferric ions. The powder within the second reactor comprises a higher weight percent of the at least one base metal than the powder in the first reactor. Additional methods of recovering metals from electronic waste are also described, as well as an apparatus of recovering metals from electronic waste.
    Type: Application
    Filed: August 30, 2017
    Publication date: December 21, 2017
    Inventors: Tedd E. Lister, Jacob A. Parkman, Luis A. Diaz Aldana, Gemma Clark, Eric J. Dufek, Philip Keller
  • Patent number: 9777346
    Abstract: A method of recovering metals from electronic waste comprises providing a powder comprising electronic waste in at least a first reactor and a second reactor and providing an electrolyte comprising at least ferric ions in an electrochemical cell in fluid communication with the first reactor and the second reactor. The method further includes contacting the powders within the first reactor and the second reactor with the electrolyte to dissolve at least one base metal from each reactor into the electrolyte and reduce at least some of the ferric ions to ferrous ions. The ferrous ions are oxidized at an anode of the electrochemical cell to regenerate the ferric ions. The powder within the second reactor comprises a higher weight percent of the at least one base metal than the powder in the first reactor. Additional methods of recovering metals from electronic waste are also described, as well as an apparatus of recovering metals from electronic waste.
    Type: Grant
    Filed: September 3, 2015
    Date of Patent: October 3, 2017
    Assignee: Battelle Energy Alliance, LLC
    Inventors: Tedd E Lister, Jacob A Parkman, Luis A Diaz Aldana, Gemma Clark, Eric J Dufek, Philip Keller
  • Publication number: 20170266044
    Abstract: Methods, systems, and device for oxygenated ocular region treatment are provided. For example, a method of ocular region treatment is provided in accordance with various embodiments where an oxygenated material may be applied to an ocular region. The ocular region may include at least corneal tissue, limbal tissue, or ocular adnexal tissue. The oxygenated material may include at least an oxygenated emulsion, an oxygenated ointment, or an oxygenated liquid, which may be supersaturated in some cases. The oxygenated material may include perfluorocarbon, such as perfluorodecalin. The oxygenated material may include at least an antibiotic or an anesthetic in some cases. Some embodiments include an ocular region treatment system or device that may include an eye cup configured to surround an ocular region. A dispenser may be configured to couple with the eye cup and to dispense an oxygenated material to the ocular region may be provided.
    Type: Application
    Filed: March 16, 2017
    Publication date: September 21, 2017
    Inventors: Mark S. Lake, Kathryn Pate, William Brad Hensley, Philip Keller
  • Publication number: 20170067135
    Abstract: A method of recovering metals from electronic waste comprises providing a powder comprising electronic waste in at least a first reactor and a second reactor and providing an electrolyte comprising at least ferric ions in an electrochemical cell in fluid communication with the first reactor and the second reactor. The method further includes contacting the powders within the first reactor and the second reactor with the electrolyte to dissolve at least one base metal from each reactor into the electrolyte and reduce at least some of the ferric ions to ferrous ions. The ferrous ions are oxidized at an anode of the electrochemical cell to regenerate the ferric ions. The powder within the second reactor comprises a higher weight percent of the at least one base metal than the powder in the first reactor. Additional methods of recovering metals from electronic waste are also described, as well as an apparatus of recovering metals from electronic waste.
    Type: Application
    Filed: September 3, 2015
    Publication date: March 9, 2017
    Inventors: TEDD E LISTER, JACOB A. PARKMAN, LUIS A. DIAZ ALDANA, GEMMA CLARK, ERIC J. DUFEK, PHILIP KELLER
  • Patent number: 8121180
    Abstract: A novel method of configuring a transceiver for data transmission via residential wiring. The method involves setting a DC level at the output terminal of the transceiver, comparing a value representing the DC level with a predetermined threshold level, and controlling an output driver of the transceiver until this value is equal to the threshold level. The output driver may be controlled during initialization of the transceiver. To implement the method, the transceiver is provided with an output drive control system for comparing a DC level set at the output terminal with the threshold signal to control the output driver so as to maintain the transmit signal at a prescribed level.
    Type: Grant
    Filed: October 7, 1999
    Date of Patent: February 21, 2012
    Assignee: GLOBALFOUNDRIES Inc.
    Inventor: Philip Keller
  • Publication number: 20070262204
    Abstract: A deployable structure is disclosed. The deployable structure may include one or more slit-tube longerons; and one or more flat sheets coupled with the one or more slit-tube longerons. The one or more slit-tube longerons and the one or more flat sheets may be stowed by rolling the one or more slit-tube longerons and the one or more flat sheets together into a roll. In one embodiment, at least a portion of the one or more slit-tube longerons may be exposed when stowed. In another embodiment, the one or more slit-tube longerons may be manufactured from a shape memory material. These slit-tube longerons unroll into to a straight configuration when exposed to heat.
    Type: Application
    Filed: April 2, 2007
    Publication date: November 15, 2007
    Applicant: Composite Technology Development, Inc.
    Inventors: Neal Beidleman, Gregg Freebury, Will Francis, Mark Lake, Rory Barrett, Philip Keller, Robert Taylor
  • Patent number: 7215763
    Abstract: A novel method of configuring a physical layer transceiver for providing data communications via residential wiring. A transmit section of the transceiver produces a pulse signal having selected amplitude. This pulse signal received by an input circuit in a receiver section of the transceiver is used for adjusting the gain of the input circuit to a fixed optimum level. In particular, the gain of the input circuit may be adjusted in response to at least one pulse. A calibration circuit of the transceiver includes a comparator for comparing the receive signal produced at the output of the input circuit, with a threshold level, and controller that supplies the input circuit with a gain control value, and sets the threshold level. The controller reduce the gain control value to decrease the gain of the input circuit when the receive signal exceeds the threshold level. The gain control value is increased to raise the gain of the input circuit when the receive signal is less than the threshold level.
    Type: Grant
    Filed: June 21, 1999
    Date of Patent: May 8, 2007
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Philip Keller, Colin Nayler
  • Patent number: 5529070
    Abstract: An ultrasonic imaging system is disclosed which produces a sequence of images of planes of a subject including both image and spatial positional information of the image plane. In one embodiment the positional information is developed from a plurality of accelerometers located within a scanhead. The second integrals of the acceleration signals are used to determine positional information of the image plane. In a second embodiment a transmitter transmits a magnetic field and a receiver attached to the scanhead detects the position of the scanhead in relation to the transmitted magnetic field. Spatially related images are displayed by displaying one image plane in the plane of the display and a second image plane projected in relation thereto. Either of the displayed planes may be displayed in outline form, and the outline may be modulated to depict depth.
    Type: Grant
    Filed: September 27, 1994
    Date of Patent: June 25, 1996
    Assignee: Advanced Technology Laboratories, Inc.
    Inventors: Larry J. Augustine, Philip Keller
  • Patent number: 5353354
    Abstract: An ultrasonic imaging system is disclosed which produces a sequence of images of planes of a subject including both image and spatial positional information of the image plane. In one embodiment the positional information is developed from a plurality of accelerometers located within a scanhead. The second integrals of the acceleration signals are used to determine positional information of the image plane. In a second embodiment a transmitter transmits a magnetic field and a receiver attached to the scanhead detects the position of the scanhead in relation to the transmitted magnetic field. Spatially related images are displayed by displaying one image plane in the plane of the display and a second image plane projected in relation thereto. Either of the displayed planes may be displayed in outline form, and the outline may be modulated to depict depth.
    Type: Grant
    Filed: November 21, 1991
    Date of Patent: October 4, 1994
    Assignee: Advanced Technology Laboratories, Inc.
    Inventors: Philip Keller, Larry J. Augustine, Ronald E. Daigle