Patents by Inventor Philip P. Walsh

Philip P. Walsh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9022747
    Abstract: A method of compressing a gas, which uses a compressor train having a plurality of discrete portions and including at least an upstream portion, a mid-stream portion and a downstream portion arranged successively in flow series. The method includes: (i) performing a first compression step by directing a flow of said gas into the upstream compressor portion and driving the upstream compressor portion to compress the gas; (ii) performing a second compression step by directing the compressed flow from the upstream compressor portion into the mid-stream compressor portion and driving the mid-stream compressor portion to further compress the gas; and (iii) performing a third compression step by directing the compressed flow from the mid-stream compressor portion into the downstream compressor portion and driving the downstream compressor portion to further compress the gas.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: May 5, 2015
    Assignee: Rolls-Royce PLC
    Inventors: Paul Fletcher, Philip P. Walsh
  • Patent number: 8875512
    Abstract: A distribution pipeline power plant, comprising: an input, configured to receive a fluid that has been heated using energy derived from a geothermal field; an expander, configured to extract energy from the fluid that has been heated using energy derived from a geothermal field; and an output configured to transfer at least some of the energy extracted from the fluid that has been heated using energy derived from a geothermal field to a circulator to drive a further fluid along a distribution pipeline.
    Type: Grant
    Filed: June 12, 2012
    Date of Patent: November 4, 2014
    Assignee: Rolls-Royce PLC
    Inventors: Paul Fletcher, Philip P. Walsh, Aaron J. Stevens
  • Publication number: 20130014506
    Abstract: A distribution pipeline power plant, comprising: an input, configured to receive a fluid that has been heated using energy derived from a geothermal field; an expander, configured to extract energy from the fluid that has been heated using energy derived from a geothermal field; and an output configured to transfer at least some of the energy extracted from the fluid that has been heated using energy derived from a geothermal field to a circulator to drive a further fluid along a distribution pipeline.
    Type: Application
    Filed: June 12, 2012
    Publication date: January 17, 2013
    Applicant: ROLLS-ROYCE PLC
    Inventors: Paul FLETCHER, Philip P. WALSH, Aaron J. STEVENS
  • Publication number: 20120230840
    Abstract: A method of compressing a gas, which uses a compressor train having a plurality of discrete portions and including at least an upstream portion, a mid-stream portion and a downstream portion arranged successively in flow series. The method includes: (i) performing a first compression step by directing a flow of said gas into the upstream compressor portion and driving the upstream compressor portion to compress the gas; (ii) performing a second compression step by directing the compressed flow from the upstream compressor portion into the mid-stream compressor portion and driving the mid-stream compressor portion to further compress the gas; and (iii) performing a third compression step by directing the compressed flow from the mid-stream compressor portion into the downstream compressor portion and driving the downstream compressor portion to further compress the gas.
    Type: Application
    Filed: November 12, 2010
    Publication date: September 13, 2012
    Applicant: ROLLS-ROYCE PLC
    Inventors: Paul Fletcher, Philip P. Walsh
  • Patent number: 7500347
    Abstract: A variable geometry combustor having a combustor liner that defines at least one dilution port in order to provide air to a dilution zone within the combustor. At least one valve is positioned adjacent the dilution port for controlling the flow of air through the dilution port wherein the valve is settable to maintain one of a plurality of different open configurations.
    Type: Grant
    Filed: August 10, 2004
    Date of Patent: March 10, 2009
    Assignee: Rolls-Royce plc
    Inventors: Noel A Sanders, Carl C Bourne, Anthony J Moran, Paul Fletcher, Philip P Walsh
  • Patent number: 7162875
    Abstract: In order to regulate fuel flow to the combustor (36) of the combustion turbine engine (10) having a primary combustion zone (64) and at least one further combustion zone, the temperature of the inlet and outlet of the combustor (36) are determined, as are first and second values representing first and second properties, with the first property being one of: the total enthalpy rise in the combustor (36), the equivalence ratio of the combustor (36), the fuel/air ratio of said combustor (36), the fuel flow through the combustor, and the second property being one of: the enthalpy rise in the primary zone (64), the equivalence ratio of said primary zone (64), the fuel/air ratio of the primary zone(64); the temperature rise across the primary zone(64), or the fuel flow through the primary zone (64). The second property is determined from the first value and the current value of the ratio of the fuel to the primary zone (64) to the total fuel to the combustor (36).
    Type: Grant
    Filed: September 30, 2004
    Date of Patent: January 16, 2007
    Assignee: Rolls-Royce plc
    Inventors: Paul Fletcher, Philip P Walsh
  • Patent number: 7134269
    Abstract: A gas turbine engine (10) comprises a second compressor (14), a first compressor (16), a heat exchanger (18), a combustor (20), a first turbine (22), a second turbine (24) and a third turbine (26) arranged in flow series. The first turbine (22) is arranged to drive the first compressor (16). The second turbine (24) is arranged to drive the second compressor (14). There are means to inject liquid into the gas turbine engine (10). The means to inject liquid is arranged to inject liquid upstream (46) of the second compressor (14), within (48) the second compressor (14), between (50) the second compressor (14) and the first compressor (16), within (52) the first compressor (16), between (54) the first compressor (16) and the heat exchanger (18) or within (56) the combustor (20) to boost the power of the gas turbine engine (10).
    Type: Grant
    Filed: May 6, 2005
    Date of Patent: November 14, 2006
    Assignee: Rolls-Royce plc
    Inventors: Philip P. Walsh, Paul Fletcher
  • Patent number: 6968698
    Abstract: A gas turbine engine (10) comprises a second compressor (14), a first compressor (16), a heat exchanger (18), a combustor (20), a first turbine (22), a second turbine (24) and a third turbine (26) arranged in flow series. The first turbine (22) is arranged to drive the first compressor (16). The second turbine (24) is arranged to drive the second compressor (14). There are means to inject liquid into the gas turbine engine (10). The means to inject liquid is arranged to inject liquid upstream (46) of the second compressor (14), within (48) the second compressor (14), between (50) the second compressor (14) and the first compressor (16), within (52) the first compressor (16), between (54) the first compressor (16) and the heat exchanger (18) or within (56) the combustor (20) to boost the power of the gas turbine engine (10).
    Type: Grant
    Filed: May 15, 2003
    Date of Patent: November 29, 2005
    Assignee: Rolls-Royce plc
    Inventors: Philip P. Walsh, Paul Fletcher
  • Patent number: 6865891
    Abstract: A gas turbine engine (10) comprises a first compressor (16), a combustor (22) and a first turbine (24) arranged in flow series. The first turbine (24) is arranged to drive the first compressor (16). The first compressor (16) has variable inlet guide vanes (38) and the first turbine (24) has variable inlet guide vanes (42). A second compressor (48) is arranged upstream of the first compressor (16). An auxiliary intake (12) is arranged upstream of the first compressor (16) and downstream of the second compressor (48). A valve (54) is arranged upstream of the first compressor (16) and downstream of the second compressor (48). The valve (54) is movable between a first position in which the second compressor (48) supplies air to the first compressor (16) and a second position in which the second compressor (48) does not supply fluid to the second compressor (16) and the auxiliary intake (12) supplies fluid to the first compressor (16).
    Type: Grant
    Filed: May 8, 2003
    Date of Patent: March 15, 2005
    Assignee: Rolls-Royce plc
    Inventors: Philip P. Walsh, Paul Fletcher
  • Publication number: 20040025513
    Abstract: A gas turbine engine (10) comprises a second compressor (14), a first compressor (16), a heat exchanger (18), a combustor (20), a first turbine (22), a second turbine (24) and a third turbine (26) arranged in flow series. The first turbine (22) is arranged to drive the first compressor (16). The second turbine (24) is arranged to drive the second compressor (14). There are means to inject liquid into the gas turbine engine (10). The means to inject liquid is arranged to inject liquid upstream (46) of the second compressor (14), within (48) the second compressor (14), between (50) the second compressor (14) and the first compressor (16), within (52) the first compressor (16), between (54) the first compressor (16) and the heat exchanger (18) or within (56) the combustor (20) to boost the power of the gas turbine engine (10).
    Type: Application
    Filed: May 15, 2003
    Publication date: February 12, 2004
    Inventors: Philip P. Walsh, Paul Fletcher
  • Publication number: 20040006994
    Abstract: A gas turbine engine (10) comprises a first compressor (16), a combustor (22) and a first turbine (24) arranged in flow series. The first turbine (24) is arranged to drive the first compressor (16). The first compressor (16) has variable inlet guide vanes (38) and the first turbine (24) has variable inlet guide vanes (42). A second compressor (48) is arranged upstream of the first compressor (16). An auxiliary intake (12) is arranged upstream of the first compressor (16) and downstream of the second compressor (48). A valve (54) is arranged upstream of the first compressor (16) and downstream of the second compressor (48). The valve (54) is movable between a first position in which the second compressor (48) supplies air to the first compressor (16) and a second position in which the second compressor (48) does not supply fluid to the second compressor (16) and the auxiliary intake (12) supplies fluid to the first compressor (16).
    Type: Application
    Filed: May 8, 2003
    Publication date: January 15, 2004
    Inventors: Philip P. Walsh, Paul Fletcher
  • Patent number: 5743079
    Abstract: A fuel control system for a premixed lean burn combustor in a combustion turbine engine, the combustor having at least two stages (P,S,T), the control system including; an air flow evaluation module having means utilising an iterative algorithm to derive an accurate value of total air flow to the combustor, the evaluation module further having means dividing the derived total air flow value into the proportions (Mp, Ms, Mt) required by the combustor stages (p,s, t) and outputting signals in parallel representing the air flow to respective combustor stages (p,s,t), and a control module associated with each stage (p,s,t) of the combustor and responsible for setting the fuel demand signal for the associated combustor stage (p,s,t), each control module being adapted to set the fuel demand signal with reference to an appropriate one of said output signals.
    Type: Grant
    Filed: September 19, 1996
    Date of Patent: April 28, 1998
    Assignee: Rolls-Royce plc
    Inventors: Philip P. Walsh, Nicholas C. Corbett, Arthur L. Rowe