Patents by Inventor Philip S. Chen

Philip S. Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20040093928
    Abstract: A sensor with a protective barrier on a noble metal filter. The barrier protects the noble metal filter from catalytic poisons and any overdose of target particles. The barrier may be a polymer or non-polymer.
    Type: Application
    Filed: November 20, 2002
    Publication date: May 20, 2004
    Inventors: Frank DiMeo, Philip S. Chen
  • Patent number: 6599447
    Abstract: A Zr-doped (Ba,Sr)TiO3 perovskite crystal material dielectric thin film. Such dielectric thin film is characterized by at least one of the characteristics including: (a) a breakdown strength of at least 1.3 MV/cm; (b) a leakage current of not more than 1×10−3 A/cm2 under applied voltage of about ±3V or above and at temperature of about 100° C. or above; and (c) an energy storage density of at least 15 J/cc. The dielectric thin film comprises zirconium dopant in the amount of 0.5% to 50% by total weight of the Zr-doped (Ba,Sr)TiO3 perovskite crystal material, preferably 2-15%, more preferably 4% to 14%, and most preferably 5% to 12%. Such dielectric thin film in a preferred aspect is deposited by a MOCVD process using metal precursors Ba(thd)2-polyamine, Sr(thd)2-polyamine, Zr(thd)4, and Ti(OiPr)2(thd)2 at a deposition temperature in the range from about 560° C. to 700° C.
    Type: Grant
    Filed: November 29, 2000
    Date of Patent: July 29, 2003
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Gregory T. Stauf, Philip S. Chen, Jeffrey F. Roeder
  • Publication number: 20020103087
    Abstract: A Zr-doped (Ba,Sr)TiO3 perovskite crystal material dielectric thin film. Such dielectric thin film is characterized by at least one of the characteristics including: (a) a breakdown strength of at least 1.3 MV/cm; (b) a leakage current of not more than 1×10−3 A/cm2 under applied voltage of about ±3V or above and at temperature of about 100° C. or above; and (c) an energy storage density of at least 15 J/cc. The dielectric thin film comprises zirconium dopant in the amount of 0.5% to 50% by total weight of the Zr-doped (Ba,Sr)TiO3 perovskite crystal material, preferably 2-15%, more preferably 4% to 14%, and most preferably 5% to 12%. Such dielectric thin film in a preferred aspect is deposited by a MOCVD process using metal precursors Ba(thd)2-polyamine, Sr(thd)2-polyamine, Zr(thd)4, and Ti(OiPr)2(thd)2 at a deposition temperature in the range from about 560° C. to 700° C.
    Type: Application
    Filed: November 29, 2000
    Publication date: August 1, 2002
    Inventors: Gregory T. Stauf, Philip S. Chen, Jeffrey F. Roeder