Patents by Inventor Philip S. Green

Philip S. Green has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8840628
    Abstract: The invention is directed to mainpulator assembly (2) for holding and manipulating a surgical instrument (14) in a telerobotic system. The assembly comprises a base (6) fixable by passive or power driven positioning devices to a surface, such as an operating table, and an instrument holder (4) movably mounted on the base. The instrument holder comprises a chassis (6) and an instrument support (70) movably mounted on the body and having an interface engageable with the surgical instrument to releasably mount the instrument to the instrument holder. A drive assembly (7) is operatively coupled to the instrument holder for providing the instrument with at least two degrees of freedom. The instrument holder is separable from the base and the drive assembly so that the holder can be sterilized. The assembly further includes a force sensing element (52) mounted distal to the holder and the drive assembly for detecting forces exerted on the surgical instrument and providing feedback to the surgeon.
    Type: Grant
    Filed: July 10, 2013
    Date of Patent: September 23, 2014
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Philip S. Green, Joel F. Jensen
  • Publication number: 20130296886
    Abstract: The invention is directed to mainpulator assembly (2) for holding and manipulating a surgical instrument (14) in a telerobotic system. The assembly comprises a base (6) fixable by passive or power driven positioning devices to a surface, such as an operating table, and an instrument holder (4) movably mounted on the base. The instrument holder comprises a chassis (6) and an instrument support (70) movably mounted on the body and having an interface engageable with the surgical instrument to releasably mount the instrument to the instrument holder. A drive assembly (7) is operatively coupled to the instrument holder for providing the instrument with at least two degrees of freedom. The instrument holder is separable from the base and the drive assembly so that the holder can be sterilized. The assembly further includes a force sensing element (52) mounted distal to the holder and the drive assembly for detecting forces exerted on the surgical instrument and providing feedback to the surgeon.
    Type: Application
    Filed: July 10, 2013
    Publication date: November 7, 2013
    Applicant: SRI International
    Inventors: Philip S. GREEN, Joel F. JENSEN
  • Patent number: 8526737
    Abstract: In a telemanipulation system for manipulating objects located in a workspace at a remote worksite by an operator from an operator's station, such as in a remote surgical system, the remote worksite having a manipulator with an end effector for manipulating an object at the workspace, such as a body cavity, a controller including a hand control at the control operator's station for remote control of the manipulator, an image capture device, such as a camera, and image output device for reproducing a viewable real-time image, the improvement wherein a position sensor associated with the image capture device senses position relative to the end effector and a processor transforms the viewable real-time image into a perspective image with correlated manipulation of the end effector by the hand controller such that the operator can manipulate the end effector and the manipulator as if viewing the workspace in true presence.
    Type: Grant
    Filed: October 25, 2011
    Date of Patent: September 3, 2013
    Assignee: SRI International
    Inventor: Philip S. Green
  • Patent number: 8500753
    Abstract: A manipulator assembly (2) for holding and manipulating a surgical instrument (14) in a telerobotic system, comprising an instrument holder (4) movably mounted on a base. The instrument holder comprises a chassis (6) and an instrument support (70) movably mounted on the body and having an interface engageable with the surgical instrument to releasably mount the instrument to the instrument holder. A drive assembly (7) is operatively coupled to the instrument holder for providing the instrument with at least two degrees of freedom. The instrument holder is separable from the base and the drive assembly so that the holder can be sterilized. The assembly is attached to a remote center positioner (300) for constraining the instrument to rotate a point coincident with the entry incision and an inclinometer (350) for preventing gravitational forces acting on the system's mechanisms from being felt by the surgeon.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: August 6, 2013
    Assignee: SRI International
    Inventors: Philip S. Green, Joel F. Jensen
  • Publication number: 20130023899
    Abstract: In a telemanipulation system for manipulating objects located in a workspace at a remote worksite by an operator from an operator's station, such as in a remote surgical system, the remote worksite having a manipulator with an end effector for manipulating an object at the workspace, such as a body cavity, a controller including a hand control at the control operator's station for remote control of the manipulator, an image capture device, such as a camera, and image output device for reproducing a viewable real-time image, the improvement wherein a position sensor associated with the image capture device senses position relative to the end effector and a processor transforms the viewable real-time image into a perspective image with correlated manipulation of the end effector by the hand controller such that the operator can manipulate the end effector and the manipulator as if viewing the workspace in true presence.
    Type: Application
    Filed: October 25, 2011
    Publication date: January 24, 2013
    Applicant: SRI International
    Inventor: Philip S. Green
  • Publication number: 20120089154
    Abstract: A manipulator assembly (2) for holding and manipulating a surgical instrument (14) in a telerobotic system, comprising an instrument holder (4) movably mounted on a base. The instrument holder comprises a chassis (6) and an instrument support (70) movably mounted on the body and having an interface engageable with the surgical instrument to releasably mount the instrument to the instrument holder. A drive assembly (7) is operatively coupled to the instrument holder for providing the instrument with at least two degrees of freedom. The instrument holder is separable from the base and the drive assembly so that the holder can be sterilized. The assembly is attached to a remote center positioner (300) for constraining the instrument to rotate a point coincident with the entry incision and an inclinometer (350) for preventing gravitational forces acting on the system's mechanisms from being felt by the surgeon.
    Type: Application
    Filed: September 22, 2011
    Publication date: April 12, 2012
    Applicant: SRI International
    Inventors: PHILIP S. GREEN, Joel F. Jensen
  • Publication number: 20110295315
    Abstract: The invention is directed to a system and method for releasably holding a surgical instrument (14), such as an endoscopic instrument configured for delivery through a small percutaneous penetration in a patient. The instrument comprises an elongate shaft (100) with a pair of mounting pins (116) laterally extending from the shaft between its proximal and distal ends. An instrument holder comprises a support having a central bore (202) and an axially extending slot (204) for receiving the instrument shaft and the mounting pins. A pair of locking slots (206) are cut into the support transversely to and in communication with the axial slot so that the mounting pins can be rotated within the locking slots. The instrument support further includes a latch assembly for automatically locking the mounting pins within the locking slots to releasably couple the instrument to the instrument holder.
    Type: Application
    Filed: August 5, 2011
    Publication date: December 1, 2011
    Applicant: SRI International.
    Inventors: Joel F. Jensen, Philip S. Green
  • Patent number: 8068649
    Abstract: In a telemanipulation system for manipulating objects located in a workspace at a remote worksite by an operator from an operator's station, such as in a remote surgical system, the remote worksite having a manipulator with an end effector for manipulating an object at the workspace, such as a body cavity, a controller including a hand control at the control operator's station for remote control of the manipulator, an image capture device, such as a camera, and image output device for reproducing a viewable real-time image, the improvement wherein a position sensor associated with the image capture device senses position relative to the end effector and a processor transforms the viewable real-time image into a perspective image with correlated manipulation of the end effector by the hand controller such that the operator can manipulate the end effector and the manipulator as if viewing the workspace in true presence.
    Type: Grant
    Filed: January 10, 2008
    Date of Patent: November 29, 2011
    Assignee: SRI International, Inc.
    Inventor: Philip S. Green
  • Patent number: 8048088
    Abstract: The invention is directed to manipulator assembly (2) for holding and manipulating a surgical instrument (14) in a telerobotic system. The assembly comprises a base (6) fixable by passive or power driven positioning devices to a surface, such as an operating table, and an instrument holder (4) movably mounted on the base. The instrument holder comprises a chassis (6) and an instrument support (70) movably mounted on the body and having an interface engageable with the surgical instrument to releasably mount the instrument to the instrument holder. A drive assembly (7) is operatively coupled to the instrument holder for providing the instrument with at least two degrees of freedom. The instrument holder is separable from the base and the drive assembly so that the holder can be sterilized. The assembly further includes a force sensing element (52) mounted distal to the holder and the drive assembly for detecting forces exerted on the surgical instrument and providing feedback to the surgeon.
    Type: Grant
    Filed: December 9, 2009
    Date of Patent: November 1, 2011
    Assignee: SRI International
    Inventors: Philip S. Green, Joel F. Jensen
  • Patent number: 8012160
    Abstract: The invention is directed to a system and method for releasably holding a surgical instrument (14), such as an endoscopic instrument configured for delivery through a small percutaneous penetration in a patient. The instrument comprises an elongate shaft (100) with a pair of mounting pins (116) laterally extending from the shaft between its proximal and distal ends. An instrument holder comprises a support having a central bore (202) and an axially extending slot (204) for receiving the instrument shaft and the mounting pins. A pair of locking slots (206) are cut into the support transversely to and in communication with the axial slot so that the mounting pins can be rotated within the locking slots. The instrument support further includes a latch assembly for automatically locking the mounting pins within the locking slots to releasably couple the instrument to the instrument holder.
    Type: Grant
    Filed: September 18, 2006
    Date of Patent: September 6, 2011
    Assignee: SRI International
    Inventors: Joel F. Jensen, Philip S. Green
  • Publication number: 20110060346
    Abstract: The invention is directed to a system and method for releasably holding a surgical instrument (14), such as an endoscopic instrument configured for delivery through a small percutaneous penetration in a patient. The instrument comprises an elongate shaft (100) with a pair of mounting pins (116) laterally extending from the shaft between its proximal and distal ends. An instrument holder comprises a support having a central bore (202) and an axially extending slot (204) for receiving the instrument shaft and the mounting pins. A pair of locking slots (206) are cut into the support transversely to and in communication with the axial slot so that the mounting pins can be rotated within the locking slots. The instrument support further includes a latch assembly for automatically locking the mounting pins within the locking slots to releasably couple the instrument to the instrument holder.
    Type: Application
    Filed: September 30, 2010
    Publication date: March 10, 2011
    Applicant: SRI International, Inc.
    Inventors: Joel F. Jensen, Philip S. Green, John W. Hill
  • Patent number: 7890211
    Abstract: A teleoperator system with telepresence is shown which includes right and left hand controllers (72R and 72L) for control of right and left manipulators (24R and 24L) through use of a servomechanism that includes computer (42). Cameras (46R and 46L) view workspace (30) from different angles for production of stereoscopic signal outputs at lines (48R and 48L). In response to the camera outputs a 3-dimensional top-to-bottom inverted image (30I) is produced which, is reflected by mirror (66) toward the eyes of operator (18). A virtual image (30V) is produced adjacent control arms (76R and 76L) which is viewed by operator (18) looking in the direction of the control arms. Use of the teleoperator system for surgical procedures also is disclosed.
    Type: Grant
    Filed: June 20, 2007
    Date of Patent: February 15, 2011
    Assignee: Intuitive Surgical Operations, Inc.
    Inventor: Philip S. Green
  • Patent number: 7824424
    Abstract: The invention is directed to a system and method for releasably holding a surgical instrument (14), such as an endoscopic instrument configured for delivery through a small percutaneous penetration in a patient. The instrument comprises an elongate shaft (100) with a pair of mounting pins (116) laterally extending from the shaft between its proximal and distal ends. An instrument holder comprises a support having a central bore (202) and an axially extending slot (204) for receiving the instrument shaft and the mounting pins. A pair of locking slots (206) are cut into the support transversely to and in communication with the axial slot so that the mounting pins can be rotated within the locking slots. The instrument support further includes a latch assembly for automatically locking the mounting pins within the locking slots to releasably couple the instrument to the instrument holder.
    Type: Grant
    Filed: August 1, 2005
    Date of Patent: November 2, 2010
    Assignee: SRI International
    Inventors: Joel F. Jensen, Philip S. Green
  • Publication number: 20100160930
    Abstract: The invention is directed to mainpulator assembly (2) for holding and manipulating a surgical instrument (14) in a telerobotic system. The assembly comprises a base (6) fixable by passive or power driven positioning devices to a surface, such as an operating table, and an instrument holder (4) movably mounted on the base. The instrument holder comprises a chassis (6) and an instrument support (70) movably mounted on the body and having an interface engageable with the surgical instrument to releasably mount the instrument to the instrument holder. A drive assembly (7) is operatively coupled to the instrument holder for providing the instrument with at least two degrees of freedom. The instrument holder is separable from the base and the drive assembly so that the holder can be sterilized. The assembly further includes a force sensing element (52) mounted distal to the holder and the drive assembly for detecting forces exerted on the surgical instrument and providing feedback to the surgeon.
    Type: Application
    Filed: December 9, 2009
    Publication date: June 24, 2010
    Applicant: SRI International
    Inventors: Philip S. Green, Joel F. Jensen
  • Patent number: 7648513
    Abstract: The invention is directed to manipulator assembly (2) for holding and manipulating a surgical instrument (14) in a telerobotic system. The assembly comprises a base (6) fixable by passive or power driven positioning devices to a surface, such as an operating table, and an instrument holder (4) movably mounted on the base. The instrument holder comprises a chassis (6) and an instrument support (70) movably mounted on the body and having an interface engageable with the surgical instrument to releasably mount the instrument to the instrument holder. A drive assembly (7) is operatively coupled to the instrument holder for providing the instrument with at least two degrees of freedom. The instrument holder is separable from the base and the drive assembly so that the holder can be sterilized. The assembly further includes a force sensing element (52) mounted distal to the holder and the drive assembly for detecting forces exerted on the surgical instrument and providing feedback to the surgeon.
    Type: Grant
    Filed: July 20, 2005
    Date of Patent: January 19, 2010
    Assignee: SRI International
    Inventors: Philip S. Green, Joel F. Jensen
  • Publication number: 20090082905
    Abstract: In a telemanipulation system for manipulating objects located in a workspace at a remote worksite by an operator from an operator's station, such as in a remote surgical system, the remote worksite having a manipulator with an end effector for manipulating an object at the workspace, such as a body cavity, a controller including a hand control at the control operator's station for remote control of the manipulator, an image capture device, such as a camera, and image output device for reproducing a viewable real-time image, the improvement wherein a position sensor associated with the image capture device senses position relative to the end effector and a processor transforms the viewable real-time image into a perspective image with correlated manipulation of the end effector by the hand controller such that the operator can manipulate the end effector and the manipulator as if viewing the workspace in true presence.
    Type: Application
    Filed: January 10, 2008
    Publication date: March 26, 2009
    Applicant: SRI International. Inc
    Inventor: PHILIP S. GREEN
  • Patent number: 7333642
    Abstract: In a telemanipulation system for manipulating objects located in a workspace at a remote worksite by an operator from an operator's station, such as in a remote surgical system, the remote worksite having a manipulator with an end effector for manipulating an object at the workspace, such as a body cavity, a controller including a hand control at the control operator's station for remote control of the manipulator, an image capture device, such as a camera, and image output device for reproducing a viewable real-time image, the improvement wherein a position sensor associated with the image capture device senses position relative to the end effector and a processor transforms the viewable real-time image into a perspective image with correlated manipulation of the end effector by the hand controller such that the operator can manipulate the end effector and the manipulator as if viewing the workspace in true presence.
    Type: Grant
    Filed: April 15, 2003
    Date of Patent: February 19, 2008
    Assignee: SRI International, Inc.
    Inventor: Philip S. Green
  • Patent number: 7248944
    Abstract: A teleoperator system with telepresence is shown which includes right and left hand controllers (72R and 72L) for control of right and left manipulators (24R and 24L) through use of a servomechanism that includes computer (42). Cameras (46R and 46L) view workspace (30) from different angles for production of stereoscopic signal outputs at lines (48R and 48L). In response to the camera outputs a 3-dimensional top-to-bottom inverted image (30I) is produced which, is reflected by mirror (66) toward the eyes of operator (18). A virtual image (30V) is produced adjacent control arms (76R and 76L) which is viewed by operator (18) looking in the direction of the control arms. Use of the teleoperator system for surgical procedures also is disclosed.
    Type: Grant
    Filed: February 22, 2006
    Date of Patent: July 24, 2007
    Assignee: Institute Surgical, Inc
    Inventor: Philip S. Green
  • Patent number: 7204844
    Abstract: The invention is directed to a system and method for releasably holding a surgical instrument (14), such as an endoscopic instrument configured for delivery through a small percutaneous penetration in a patient. The instrument comprises an elongate shaft (100) with a pair of mounting pins (116) laterally extending from the shaft between its proximal and distal ends. An instrument holder comprises a support having a central bore (202) and an axially extending slot (204) for receiving the instrument shaft and the mounting pins. A pair of locking slots (206) are cut into the support transversely to and in communication with the axial slot so that the mounting pins can be rotated within the locking slots. The instrument support further includes a latch assembly for automatically locking the mounting pins within the locking slots to releasably couple the instrument to the instrument holder.
    Type: Grant
    Filed: October 4, 2002
    Date of Patent: April 17, 2007
    Assignee: SRI, International
    Inventors: Joel F. Jensen, Philip S. Green
  • Patent number: 7107124
    Abstract: A teleoperator system with telepresence is shown which includes right and left hand controllers (72R and 72L) for control of right and left manipulators (24R and 24L) through use of a servomechanism that includes computer (42). Cameras (46R and 46L) view workspace (30) from different angles for production of stereoscopic signal outputs at lines (48R and 48L). In response to the camera outputs a 3-dimensional top-to-bottom inverted image (30I) is produced which, is reflected by mirror (66) toward the eyes of operator (18). A virtual image (30V) is produced adjacent control arms (76R and 76L) which is viewed by operator (18) looking in the direction of the control arms. Use of the teleoperator system for surgical procedures also is disclosed.
    Type: Grant
    Filed: December 16, 2004
    Date of Patent: September 12, 2006
    Assignee: SRI International
    Inventor: Philip S. Green