Patents by Inventor Phillip H. Clauda

Phillip H. Clauda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220226014
    Abstract: Methods and apparatus for end effector control and calibration are described. The method may include detecting a signal in response to movement of a first tube relative to a second tube, the first tube driving movement of a clamp arm of the end effector. The method may further include determining a clamp arm position of the end effector relative to a ultrasonic blade of the end effector based on the signal. The method may also include adjusting a power output to the ultrasonic blade of the end effector based on the clamp arm position.
    Type: Application
    Filed: February 4, 2022
    Publication date: July 21, 2022
    Inventors: Phillip H. Clauda, IV, Cameron Nott, John F. Cummings, David J. Cagle, Daniel J. Ulrich
  • Publication number: 20220202466
    Abstract: An ultrasonic surgical instrument and method for identifying tissue state and energizing the surgical instrument includes an end effector having an ultrasonic blade and an RF electrode, a shaft assembly, a body, and a power controller. A first ultrasonic energy input is configured to be actuated from a first unactuated energy input state to a first actuated energy input state. A trigger input is configured to be actuated from an unactuated trigger input state to an actuated trigger input state. The power controller is operatively connected to the ultrasonic blade, the RF electrode, the first ultrasonic energy input, and the trigger input and configured to direct at least one of the ultrasonic blade or the RF electrode to be selectively driven according to a predetermined drive function based on the tissue impedance, the state of the first energy input, and the state of the trigger input.
    Type: Application
    Filed: January 10, 2022
    Publication date: June 30, 2022
    Inventor: Phillip H. Clauda
  • Patent number: 11337747
    Abstract: A system for use with a surgical instrument includes an end effector, a memory circuit to store computer-executable instructions, and a processor. The end effector comprises a cutting member and a load cell sensor configured to sense a measure of force used to advance the cutting member through captured tissue. The processor is configured to execute the computer-executable instructions to initiate a first treatment cycle, access the measure of force used during the first treatment cycle to advance the cutting member through the captured tissue, determine that the measure of force exceeds a predetermined threshold, and generate an alert to a user of the surgical instrument based on the determination that a value of the measure of force exceeds the predetermined threshold. The predetermined threshold is based on an accumulation of biological material on the cutting member and a normal operational parameter of the first treatment cycle.
    Type: Grant
    Filed: March 8, 2018
    Date of Patent: May 24, 2022
    Assignee: Cilag GmbH International
    Inventors: Aaron C. Voegele, Phillip H. Clauda, Kevin L. Houser, Robert A. Kemerling, Mark A. Davison, Gregory A. Trees
  • Patent number: 11266430
    Abstract: Methods and apparatus for end effector control and calibration are described. The method may include detecting a signal in response to movement of a first tube relative to a second tube, the first tube driving movement of a clamp arm of the end effector. The method may further include determining a clamp arm position of the end effector relative to a ultrasonic blade of the end effector based on the signal. The method may also include adjusting a power output to the ultrasonic blade of the end effector based on the clamp arm position.
    Type: Grant
    Filed: November 29, 2016
    Date of Patent: March 8, 2022
    Assignee: Cilag GmbH International
    Inventors: Phillip H. Clauda, Cameron Nott, John F. Cummings, David J. Cagle, Daniel J. Ulrich
  • Patent number: 11229473
    Abstract: An ultrasonic surgical instrument and method for identifying tissue state and energizing the surgical instrument includes an end effector having an ultrasonic blade and an RF electrode, a shaft assembly, a body, and a power controller. A first ultrasonic energy input is configured to be actuated from a first unactuated energy input state to a first actuated energy input state. A trigger input is configured to be actuated from an unactuated trigger input state to an actuated trigger input state. The power controller is operatively connected to the ultrasonic blade, the RF electrode, the first ultrasonic energy input, and the trigger input and configured to direct at least one of the ultrasonic blade or the RF electrode to be selectively driven according to a predetermined drive function based on the tissue impedance, the state of the first energy input, and the state of the trigger input.
    Type: Grant
    Filed: May 1, 2018
    Date of Patent: January 25, 2022
    Assignee: Cilag GmbH International
    Inventor: Phillip H. Clauda
  • Patent number: 11045275
    Abstract: A surgical instrument includes a body, an ultrasonic blade, a clamp arm, and a resilient member. The body includes an electrical conductor and defines a longitudinal axis. The clamp arm is pivotably coupled with the body at a pivot assembly. The clamp arm is operable to compress tissue against the ultrasonic blade. The clamp arm includes an electrode operable to apply RF energy to tissue, wherein the clamp arm is configured to be loaded onto and removed from the body at the pivot assembly along a path that is transverse to the longitudinal axis defined by the body. The resilient member is located within the pivot assembly. The resilient member is configured to provide electrical continuity between the electrode of the clamp arm and the electrical conductor of the body.
    Type: Grant
    Filed: October 4, 2016
    Date of Patent: June 29, 2021
    Assignee: Cilag GmbH International
    Inventors: Chad P. Boudreaux, Phillip H. Clauda, John B. Schulte, William B. Weisenburgh, II, Timothy S. Holland, Ryan M. Asher, Tylor C. Muhlenkamp, Brian D. Black, Kristen G. Denzinger, Amy L. Benchek
  • Patent number: 10952759
    Abstract: Various ultrasonic instruments are disclosed. The ultrasonic instruments include structures configured to indicate the cutting length of the instruments, detect when grasped tissue has extended beyond the cutting length of the instrument, and prevent tissue from extending beyond the cutting length. Several techniques for each types of structures are disclosed.
    Type: Grant
    Filed: August 17, 2017
    Date of Patent: March 23, 2021
    Assignee: Ethicon LLC
    Inventors: Jeffrey D. Messerly, William E. Clem, John A. Weed, III, Eric Stout, Craig T. Davis, John E. Brady, Joseph D. Dennis, Phillip H. Clauda, Monica L. Z. Rivard
  • Patent number: 10820920
    Abstract: A variety of methods for managing a re-usable ultrasonic medical device may include a medical device control module capable of receiving functional data from a user assembled or reassembled ultrasonic medical device, and notifying the user if a value of the functional data lies within an acceptance range. If the value of the functional data does not lie within the acceptance range, the control module may prompt a user to reassemble the device or to clean or replace one or more components thereof. The functional data may relate to a clamp force of a jaw assembly, an impedance or resonant frequency value of an ultrasonic blade, or a mechanical displacement value of one or more moving components of the device.
    Type: Grant
    Filed: July 5, 2017
    Date of Patent: November 3, 2020
    Assignee: Ethicon LLC
    Inventors: Patrick J. Scoggins, Tylor C. Muhlenkamp, David C. Groene, William D. Dannaher, Benjamin D. Dickerson, Phillip H. Clauda, Rafael J. Ruiz Ortiz, Matthew C. Miller, Kevin A. Bash
  • Patent number: 10765470
    Abstract: Various forms are directed to systems and methods for dissection and coagulation of tissue. A surgical instrument includes an end effector configured to dissect and seal tissue at a distal end thereof, and a generator that is electrically coupled to the surgical instrument and that is configured to deliver energy to the end effector. The surgical instrument includes an end effector configured to interact with a tissue at a distal end thereof, a generator electrically coupled to the surgical instrument and configured to deliver radio frequency (RF) energy and ultrasonic energy to the end effector to allow the end effector to interact with the tissue. The energy delivered to the end effector switches between RF energy and ultrasonic energy based on a determination of various factors such as tissue impedance.
    Type: Grant
    Filed: June 9, 2016
    Date of Patent: September 8, 2020
    Assignee: Ethicon LLC
    Inventors: David C. Yates, Kevin L. Houser, Eitan T. Wiener, Kristen G. Denzinger, Ryan M. Asher, Phillip H. Clauda, Cameron R. Nott, Jeffrey D. Messerly, Frederick E. Shelton, IV, Geoffrey S. Strobl
  • Publication number: 20190008543
    Abstract: A variety of methods for managing a re-usable ultrasonic medical device may include a medical device control module capable of receiving functional data from a user assembled or reassembled ultrasonic medical device, and notifying the user if a value of the functional data lies within an acceptance range. If the value of the functional data does not lie within the acceptance range, the control module may prompt a user to reassemble the device or to clean or replace one or more components thereof. The functional data may relate to a clamp force of a jaw assembly, an impedance or resonant frequency value of an ultrasonic blade, or a mechanical displacement value of one or more moving components of the device.
    Type: Application
    Filed: July 5, 2017
    Publication date: January 10, 2019
    Inventors: Patrick J. Scoggins, Tylor C. Muhlenkamp, David C. Groene, William D. Dannaher, Benjamin D. Dickerson, Phillip H. Clauda, Rafael J. Ruiz Ortiz, Matthew C. Miller, Kevin A. Bash
  • Publication number: 20180333182
    Abstract: An ultrasonic surgical instrument and method for identifying tissue state and energizing the surgical instrument includes an end effector having an ultrasonic blade and an RF electrode, a shaft assembly, a body, and a power controller. A first ultrasonic energy input is configured to be actuated from a first unactuated energy input state to a first actuated energy input state. A trigger input is configured to be actuated from an unactuated trigger input state to an actuated trigger input state. The power controller is operatively connected to the ultrasonic blade, the RF electrode, the first ultrasonic energy input, and the trigger input and configured to direct at least one of the ultrasonic blade or the RF electrode to be selectively driven according to a predetermined drive function based on the tissue impedance, the state of the first energy input, and the state of the trigger input.
    Type: Application
    Filed: May 1, 2018
    Publication date: November 22, 2018
    Inventor: Phillip H. Clauda
  • Publication number: 20180235691
    Abstract: A surgical system includes a module for compiling a plurality of operational parameters of the surgical system during a plurality of treatment cycles performed by the surgical system. The module includes a processor and a memory unit, the processor configured to store in the memory unit values of the plurality of operational parameters associated with each of the plurality of treatment cycles, wherein the processor is configured to identify a subset of the stored values of the plurality of operational parameters temporally proximate to an intervening event.
    Type: Application
    Filed: March 8, 2018
    Publication date: August 23, 2018
    Inventors: Aaron C. Voegele, Phillip H. Clauda, Kevin L. Houser, Robert A. Kemerling, Mark A. Davison, Foster B. Stulen, Gregory A. Trees
  • Patent number: 10004528
    Abstract: An apparatus comprises a body, a shaft assembly, and an end effector. The shaft assembly extends distally from the body. The end effector is located at a distal end of the shaft assembly. The end effector comprises an ultrasonic blade, a clamp arm, and a sleeve. The ultrasonic blade is configured to vibrate at an ultrasonic frequency. The clamp arm is configured to move toward the ultrasonic blade. The sleeve extends along at least part of the length of an outer portion of the ultrasonic blade or the clamp arm. The sleeve is configured to prevent tissue from contacting a portion of the ultrasonic blade or clamp arm covered by the sleeve.
    Type: Grant
    Filed: November 25, 2014
    Date of Patent: June 26, 2018
    Assignee: Ethicon LLC
    Inventors: Craig N. Faller, Cory G. Kimball, David J. Cagle, Benjamin D. Dickerson, II, Kristen Denzinger, Jeffrey D. Messerly, Phillip H. Clauda, Ryan M. Asher, Frederick L. Estera, Omar J. Vakharia, William B. Weisenburgh, II, Richard W. Timm, Richard C. Smith, Paul F. Riestenberg, Wells D. Haberstich, Gregory W. Johnson
  • Publication number: 20180146976
    Abstract: Methods and apparatus for end effector control and calibration are described. The method may include detecting a signal in response to movement of a first tube relative to a second tube, the first tube driving movement of a clamp arm of the end effector. The method may further include determining a clamp arm position of the end effector relative to a ultrasonic blade of the end effector based on the signal. The method may also include adjusting a power output to the ultrasonic blade of the end effector based on the clamp arm position.
    Type: Application
    Filed: November 29, 2016
    Publication date: May 31, 2018
    Inventors: Phillip H. Clauda, Cameron Nott, John F. Cummings, David J. Cagle, Daniel J. Ulrich
  • Publication number: 20180078268
    Abstract: Various ultrasonic instruments are disclosed. The ultrasonic instruments include structures configured to indicate the cutting length of the instruments, detect when grasped tissue has extended beyond the cutting length of the instrument, and prevent tissue from extending beyond the cutting length. Several techniques for each types of structures are disclosed.
    Type: Application
    Filed: August 17, 2017
    Publication date: March 22, 2018
    Inventors: Jeffrey D. Messerly, William E. Clem, John A. Weed, III, Eric Stout, Craig T. Davis, John Brady, Joseph D. Dennis, Phillip H. Clauda, Monica L. Zeckel
  • Publication number: 20170105754
    Abstract: A surgical instrument includes a body, an ultrasonic blade, a clamp arm, and a resilient member. The body includes an electrical conductor and defines a longitudinal axis. The clamp arm is pivotably coupled with the body at a pivot assembly. The clamp arm is operable to compress tissue against the ultrasonic blade. The clamp arm includes an electrode operable to apply RF energy to tissue, wherein the clamp arm is configured to be loaded onto and removed from the body at the pivot assembly along a path that is transverse to the longitudinal axis defined by the body. The resilient member is located within the pivot assembly. The resilient member is configured to provide electrical continuity between the electrode of the clamp arm and the electrical conductor of the body.
    Type: Application
    Filed: October 4, 2016
    Publication date: April 20, 2017
    Inventors: Chad P. Boudreaux, Phillip H. Clauda, John B. Schulte, William B. Weisenburgh, II, Timothy S. Holland, Ryan M. Asher, Tylor C. Muhlenkamp, Brian D. Black, Kristen G. Denzinger, Amy L. Benchek
  • Patent number: 9386984
    Abstract: A retainer for use with a fastener cartridge that is locked to the fastener cartridge until the fastener cartridge is inserted into a fastener cartridge channel of a surgical fastener. The retainer can include one or more deflectable tabs that engage the fastener cartridge. The one or more tabs can be displaced when the fastener cartridge is fully installed in the fastener cartridge channel such that the tabs disengage from the fastener cartridge, enabling a user to remove the retainer. In certain embodiments, tabs can extend from a body of the retainer and can engage exterior portions of a fastener cartridge. The tabs can be displaced outwardly by the fastener cartridge channel. In certain embodiments, tabs can extend from one or more movable portions that engage a slot in the fastener cartridge. The tabs can be displaced inwardly when the movable portions are deflected by the fastener cartridge channel.
    Type: Grant
    Filed: February 8, 2013
    Date of Patent: July 12, 2016
    Assignee: Ethicon Endo-Surgery, LLC
    Inventors: Taylor W. Aronhalt, Michael J. Vendely, Phillip H. Clauda
  • Publication number: 20150289925
    Abstract: A surgical system includes a module for compiling a plurality of operational parameters of the surgical system during a plurality of treatment cycles performed by the surgical system. The module includes a processor and a memory unit, the processor configured to store in the memory unit values of the plurality of operational parameters associated with each of the plurality of treatment cycles, wherein the processor is configured to identify a subset of the stored values of the plurality of operational parameters temporally proximate to an intervening event.
    Type: Application
    Filed: April 15, 2014
    Publication date: October 15, 2015
    Applicant: Ethicon Endo-Surgery, Inc.
    Inventors: Aaron C. Voegele, Phillip H. Clauda, Kevin L. Houser, Robert A. Kemerling, Mark A. Davison, Foster B. Stulen, Gregory A. Trees
  • Publication number: 20150148835
    Abstract: An apparatus comprises a body, a shaft assembly, and an end effector. The shaft assembly extends distally from the body. The end effector is located at a distal end of the shaft assembly. The end effector comprises an ultrasonic blade, a clamp arm, and a sleeve. The ultrasonic blade is configured to vibrate at an ultrasonic frequency. The clamp arm is configured to move toward the ultrasonic blade. The sleeve extends along at least part of the length of an outer portion of the ultrasonic blade or the clamp arm. The sleeve is configured to prevent tissue from contacting a portion of the ultrasonic blade or clamp arm covered by the sleeve.
    Type: Application
    Filed: November 25, 2014
    Publication date: May 28, 2015
    Inventors: Craig N. Faller, Cory G. Kimball, David J. Cagle, Benjamin D. Dickerson, II, Kristen Denzinger, Jeffrey D. Messerly, Phillip H. Clauda, Ryan M. Asher, Frederick L. Estera, Omar J. Vakharia, William B. Weisenburgh, II, Richard W. Timm, Richard C. Smith, Paul F. Riestenberg, Wells D. Haberstich, Gregory W. Johnson
  • Publication number: 20140224686
    Abstract: A retainer for use with a fastener cartridge that is locked to the fastener cartridge until the fastener cartridge is inserted into a fastener cartridge channel of a surgical fastener. The retainer can include one or more deflectable tabs that engage the fastener cartridge. The one or more tabs can be displaced when the fastener cartridge is fully installed in the fastener cartridge channel such that the tabs disengage from the fastener cartridge, enabling a user to remove the retainer. In certain embodiments, tabs can extend from a body of the retainer and can engage exterior portions of a fastener cartridge. The tabs can be displaced outwardly by the fastener cartridge channel. In certain embodiments, tabs can extend from one or more movable portions that engage a slot in the fastener cartridge. The tabs can be displaced inwardly when the movable portions are deflected by the fastener cartridge channel.
    Type: Application
    Filed: February 8, 2013
    Publication date: August 14, 2014
    Applicant: Ethicon Endo-Surgery, Inc.
    Inventors: Taylor W. Aronhalt, Michael J. Vendely, Phillip H. Clauda