Patents by Inventor Phillip Matz

Phillip Matz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20070184666
    Abstract: The present invention provides a method for removing residue from a cavity during the formation of an interconnect structure, a method for manufacturing an interconnect structure using the same, and a method for manufacturing an integrated circuit using the same. The method for removing residue from a cavity during the formation of an interconnect structure, among other steps, may include subjecting residue (410) having an embedded metal therein located within a cavity (310) in a dielectric layer (240) and over at least a portion of a conductive feature (220) to a short duration oxidation process so as to oxidize a substantial portion of the embedded metal, and removing the residue (410) containing the oxidized embedded metal using an etch process.
    Type: Application
    Filed: February 8, 2006
    Publication date: August 9, 2007
    Applicant: Texas Instruments Inc.
    Inventors: Patricia Smith, Heungsoo Park, Laura Matz, Vinay Shah, Phillip Matz
  • Publication number: 20070102821
    Abstract: An embodiment of the invention is a method of manufacturing an integrated circuit. The method includes forming a capping layer of a back end structure (step 706), drilling an extraction line from the capping layer to an inter-metal dielectric layer (step 708), performing a supercritical fluid process to remove portions of the inter-metal dielectric layer that are coupled to the extraction line (step 710): thereby forming a denuded dielectric region. Another embodiment of the invention is an integrated circuit 2 having a back-end structure 5 coupled to a front-end structure 4. The back-end structure 5 having a first metal level 22. The first metal level 22 having metal interconnects 15 and an inter-metal dielectric layer 19. The back-end structure 5 further containing an extraction line 24 and a denuded dielectric region 25 coupled to the extraction line 24.
    Type: Application
    Filed: December 21, 2006
    Publication date: May 10, 2007
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Satyavolu Papa Rao, Stephan Grunow, Phillip Matz
  • Publication number: 20070080426
    Abstract: MIMCAP semiconductor devices and methods for fabrication MIMCAP semiconductor devices that include a grown capacitor dielectric are provided. Exemplary MIMCAP semiconductor devices can include a bottom electrode, a grown capacitor dielectric on the bottom electrode, and a top electrode on the capacitor dielectric. The grown layer can have a k-value greater than 1 and can be formed of, for example, an oxide or nitride that is chemically or thermally grown from the bottom electrode.
    Type: Application
    Filed: October 11, 2005
    Publication date: April 12, 2007
    Inventors: Phillip Matz, Sameer Ajmera, Darius Crenshaw
  • Publication number: 20060160299
    Abstract: The formation of a MIM (metal insulator metal) capacitor (164) and concurrent formation of a resistor (166) is disclosed. A copper diffusion barrier (124) is formed over a copper deposition (110) that serves as a bottom electrode (170) of the capacitor (164). The copper diffusion barrier (124) mitigates unwanted diffusion of copper from the copper deposition (110), and is formed via electro-less deposition such that little to none of the barrier material is deposited at locations other than over a top surface (125) of the deposition of copper/bottom electrode. Subsequently, layers of dielectric (150) and conductive (152) materials are applied to form a dielectric (172) and top electrode (174) of the MIM capacitor (164), respectively, where the layer of conductive top electrode material (152) also functions to concurrently develop the resistor (166) on the same chip as the capacitor (164).
    Type: Application
    Filed: January 18, 2005
    Publication date: July 20, 2006
    Inventors: Satyavolu Rao, Darius Crenshaw, Stephan Grunow, Kenneth Brennan, Somit Joshi, Montray Leavy, Phillip Matz, Sameer Ajmera, Yuri Solomentsev
  • Publication number: 20060024902
    Abstract: A method (10) of forming a MIM (metal insulator metal) capacitor is disclosed whereby adverse affects associated with copper diffusion are mitigated even as the capacitor is scaled down. A layer of bottom electrode/copper diffusion barrier material (136) is formed (16) within an aperture (128) wherein the capacitor (100) is to be defined. The bottom electrode layer (136) is formed via a directional process so that a horizontal aspect (138) of the layer (136) is formed over a metal (110) at a bottom of the aperture (128) to a thickness (142) that is greater than a thickness (144) of a sidewall aspect (148) of the layer (136) formed upon sidewalls (132) of the aperture (128). Accordingly, the thinner sidewall aspects (148) are removed during an etching act (18) while some of the thicker horizontal aspect (138) remains. A layer of capacitor dielectric material (150) is then conformally formed (20) into the aperture 128 and over the horizontal aspect (138).
    Type: Application
    Filed: July 30, 2004
    Publication date: February 2, 2006
    Inventors: Sameer Ajmera, Darius Crenshaw, Stephan Grunow, Satyavolu Papa Rao, Phillip Matz
  • Publication number: 20050241672
    Abstract: A method comprises extracting impurities from one or more materials in a semiconductor device via treatment with a supercritical fluid (SCF). The SCF may comprise a solvent and one or more co-solvents. Solvents may comprise 1-hexanol, 1-propanol, 2-propanol, acetone, ammonia, argon, carbon dioxide, chlorotrifluoromethane, cyclohexane, dichlorodifluoromethane, ethane, ethyl alcohol, ethylene, methane, methanol, n-butane, n-hexane, nitrous oxide, n-pentane, propane, propylene, toluene, trichlorofluoromethane, trichloromethane, water, or combinations thereof.
    Type: Application
    Filed: August 13, 2004
    Publication date: November 3, 2005
    Applicant: Texas Instruments Incorporated
    Inventors: Phillip Matz, Sameer Ajmera, Ju-Ai Ruan, Jinyoung Kim, Zhijian Lu, Laura Matz
  • Publication number: 20050233586
    Abstract: A trench and via structure is formed in a low k dielectric layer (100) formed over a silicon substrate (10). Super critical CO2 and a first silylization agent are used to form a chemically bonded high density surface layer (160). Silanol species are removed from the low k dielectric layer (100) using super critical CO2 and a second silylization agent. A barrier layer (190) and copper (200) are used to fill the trench and via structure.
    Type: Application
    Filed: July 27, 2004
    Publication date: October 20, 2005
    Inventors: Phillip Matz, Sameer Ajmera, Changming Jin, Trace Hurd
  • Publication number: 20050167841
    Abstract: An embodiment of the invention is a method of manufacturing an integrated circuit. The method includes forming a capping layer of a back end structure (step 706), drilling an extraction line from the capping layer to an inter-metal dielectric layer (step 708), performing a supercritical fluid process to remove portions of the inter-metal dielectric layer that are coupled to the extraction line (step 710): thereby forming a denuded dielectric region. Another embodiment of the invention is an integrated circuit 2 having a back-end structure 5 coupled to a front-end structure 4. The back-end structure 5 having a first metal level 22. The first metal level 22 having metal interconnects 15 and an inter-metal dielectric layer 19. The back-end structure 5 further containing an extraction line 24 and a denuded dielectric region 25 coupled to the extraction line 24.
    Type: Application
    Filed: July 28, 2004
    Publication date: August 4, 2005
    Inventors: Satyavolu Papa Rao, Stephan Grunow, Phillip Matz
  • Publication number: 20050101125
    Abstract: A method (100) of fabricating an electronic device (200) formed on a semiconductor wafer. The method forms a layer (215) of a first material in a fixed position relative to the wafer. The first material has a dielectric constant less than 3.6. The method also forms a photoresist layer in (216) a fixed position relative to the layer of the first material. The method also forms at least one void (220) through the layer of the first material in response to the photoresist layer. Further, the method subjects (106) the semiconductor wafer to a plasma which incorporates a gas which includes hydrogen so as to remove the photoresist layer.
    Type: Application
    Filed: November 6, 2003
    Publication date: May 12, 2005
    Inventors: Patricia Smith, Phillip Matz