Patents by Inventor Pierre Morin

Pierre Morin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10354927
    Abstract: Integrated circuits are disclosed in which the strain properties of adjacent pFETs and nFETs are independently adjustable. The pFETs include compressive-strained SiGe on a silicon substrate, while the nFETs include tensile-strained silicon on a strain-relaxed SiGe substrate. Adjacent n-type and p-type FinFETs are separated by electrically insulating regions formed by a damascene process. During formation of the insulating regions, the SiGe substrate supporting the n-type devices is permitted to relax elastically, thereby limiting defect formation in the crystal lattice of the SiGe substrate.
    Type: Grant
    Filed: July 5, 2018
    Date of Patent: July 16, 2019
    Assignee: STMicroelectronics, Inc.
    Inventors: Nicolas Loubet, Pierre Morin, Yann Mignot
  • Publication number: 20190189802
    Abstract: A semiconductor device may include a substrate, a fin above the substrate and having a channel region therein, and source and drain regions adjacent the channel region to generate shear and normal strain on the channel region. A semiconductor device may include a substrate, a fin above the substrate and having a channel region therein, source and drain regions adjacent the channel region, and a gate over the channel region. The fin may be canted with respect to the source and drain regions to generate shear and normal strain on the channel region.
    Type: Application
    Filed: December 6, 2018
    Publication date: June 20, 2019
    Inventors: Pierre Morin, Nicolas Loubet
  • Publication number: 20190140176
    Abstract: An electronic chip includes memory cells made of a phase-change material and a transistor. First and second vias extend from the transistor through an intermediate insulating layer to a same height. A first metal level including a first interconnection track in contact with the first via is located over the intermediate insulating layer. A heating element for heating the phase-change material is located on the second via, and the phase-change material is located on the heating element. A second metal level including a second interconnection track is located above the phase-change material. A third via extends from the phase-change material to the second interconnection track.
    Type: Application
    Filed: November 8, 2018
    Publication date: May 9, 2019
    Applicants: STMicroelectronics (Crolles 2) SAS, STMicroelectronics (Grenoble 2) SAS, STMicroelectronics (Rousset) SAS
    Inventors: Franck ARNAUD, David GALPIN, Stephane ZOLL, Olivier HINSINGER, Laurent FAVENNEC, Jean-Pierre ODDOU, Lucile BROUSSOUS, Philippe BOIVIN, Olivier WEBER, Philippe BRUN, Pierre MORIN
  • Publication number: 20190131520
    Abstract: A memory cell includes a phase-change material. A via is electrically connected with a transistor and an element for heating the phase-change material. An electrically-conductive thermal barrier is positioned between the via and the heating element.
    Type: Application
    Filed: October 23, 2018
    Publication date: May 2, 2019
    Applicant: STMicroelectronics (Crolles 2) SAS
    Inventors: Pierre MORIN, Franck ARNAUD, Didier DUTARTRE
  • Publication number: 20190131521
    Abstract: A memory cell includes a phase-change material. A via is connected to a transistor and an element for heating the phase-change material. A layer made of a material (which is one of electrically insulating or has an electric resistivity greater than 2.5·10?5 ?·m and which is sufficiently thin to be crossable by an electric current due to a tunnel-type effect) is positioned between the via and the heating element. Interfaces between the layer and materials in contact with surfaces of said layer form a thermal barrier.
    Type: Application
    Filed: October 23, 2018
    Publication date: May 2, 2019
    Applicant: STMicroelectronics (Crolles 2) SAS
    Inventors: Pierre MORIN, Didier DUTARTRE
  • Patent number: 10263110
    Abstract: A strained semiconductor layer is produced from a semiconductor layer extending on an insulating layer. A thermal oxidization is performed on the semiconductor layer across its entire thickness to form two bars extending in a direction of a transistor width. Insulating trenches are formed in a direction of a transistor length. A strain of the strained semiconductor layer is induced in one implementation before the thermal oxidation is performed. Alternatively, the strain is induced after the thermal oxidation is performed. The insulating trenches serve to release a component of the strain extending in the direction of transistor width. A component of the strain extending in the direction of transistor length is maintained. The bars and trenches delimit an active area of the transistor include source, drain and channel regions.
    Type: Grant
    Filed: December 22, 2016
    Date of Patent: April 16, 2019
    Assignees: STMicroelectronics (Crolles 2) SAS, STMicroelectronics SA, Commissariat A L'Energie Atomique et aux Energies Alternatives
    Inventors: Remy Berthelon, Didier Dutartre, Pierre Morin, Francois Andrieu, Elise Baylac
  • Patent number: 10256341
    Abstract: A self-aligned SiGe FinFET device features a relaxed channel region having a high germanium concentration. Instead of first introducing germanium into the channel and then attempting to relax the resulting strained film, a relaxed channel is formed initially to accept the germanium. In this way, a presence of germanium can be established without straining or damaging the lattice. Gate structures are patterned relative to intrinsic silicon fins, to ensure that the gates are properly aligned, prior to introducing germanium into the fin lattice structure. After aligning the gate structures, the silicon fins are segmented to elastically relax the silicon lattice. Then, germanium is introduced into the relaxed silicon lattice, to produce a SiGe channel that is substantially stress-free and also defect-free. Using the method described, concentration of germanium achieved in a structurally stable film can be increased to a level greater than 85%.
    Type: Grant
    Filed: January 31, 2018
    Date of Patent: April 9, 2019
    Assignee: STMicroelectronics, Inc.
    Inventors: Pierre Morin, Nicolas Loubet
  • Publication number: 20190081079
    Abstract: A tensile strained silicon layer is patterned to form a first group of fins in a first substrate area and a second group of fins in a second substrate area. The second group of fins is covered with a tensile strained material, and an anneal is performed to relax the tensile strained silicon semiconductor material in the second group of fins and produce relaxed silicon semiconductor fins in the second area. The first group of fins is covered with a mask, and silicon-germanium material is provided on the relaxed silicon semiconductor fins. Germanium from the silicon germanium material is then driven into the relaxed silicon semiconductor fins to produce compressive strained silicon-germanium semiconductor fins in the second substrate area (from which p-channel finFET devices are formed). The mask is removed to reveal tensile strained silicon semiconductor fins in the first substrate area (from which n-channel finFET devices are formed).
    Type: Application
    Filed: November 5, 2018
    Publication date: March 14, 2019
    Applicant: STMicroelectronics, Inc.
    Inventors: Qing Liu, Pierre Morin
  • Patent number: 10204982
    Abstract: A method for forming a semiconductor device includes forming a mask layer on a stressed semiconductor layer of a stressed, semiconductor-on-insulator wafer. An isolation trench bounding the stressed semiconductor layer is formed. The isolation trench extends through the mask layer and into the SOI wafer past an oxide layer thereof. A dielectric body is formed in the isolation trench. A relaxation reduction liner is formed on the dielectric body and on an adjacent sidewall of the stressed semiconductor layer. The mask layer on the stressed semiconductor layer is removed.
    Type: Grant
    Filed: October 8, 2013
    Date of Patent: February 12, 2019
    Assignee: STMicroelectronics, Inc.
    Inventors: Pierre Morin, Qing Liu, Nicolas Loubet
  • Patent number: 10205022
    Abstract: A method of making a semiconductor device includes forming a first spacer for at least one gate stack on a first semiconductor material layer, and forming a respective second spacer for each of source and drain regions adjacent the at least one gate. Each second spacer has a pair of opposing sidewalls and an end wall coupled thereto. The method includes filling the source and drain regions with a second semiconductor material while the first and second spacers provide confinement.
    Type: Grant
    Filed: November 12, 2015
    Date of Patent: February 12, 2019
    Assignee: STMicroelectronics, Inc.
    Inventors: Nicolas Loubet, Pierre Morin
  • Patent number: 10177255
    Abstract: A semiconductor device may include a substrate, a fin above the substrate and having a channel region therein, and source and drain regions adjacent the channel region to generate shear and normal strain on the channel region. A semiconductor device may include a substrate, a fin above the substrate and having a channel region therein, source and drain regions adjacent the channel region, and a gate over the channel region. The fin may be canted with respect to the source and drain regions to generate shear and normal strain on the channel region.
    Type: Grant
    Filed: October 2, 2017
    Date of Patent: January 8, 2019
    Assignee: STMICROELECTRONICS, INC.
    Inventors: Pierre Morin, Nicolas Loubet
  • Publication number: 20180331106
    Abstract: Methods and structures for forming strained-channel finFETs are described. Fin structures for finFETs may be formed using two epitaxial layers of different lattice constants that are grown over a bulk substrate. A first thin, strained, epitaxial layer may be cut to form strain-relieved base structures for fins. The base structures may be constrained in a strained-relieved state. Fin structures may be epitaxially grown in a second layer over the base structures. The constrained base structures can cause higher amounts of strain to form in the epitaxially-grown fins than would occur for non-constrained base structures.
    Type: Application
    Filed: July 13, 2018
    Publication date: November 15, 2018
    Inventors: Pierre Morin, Nicolas Loubet
  • Publication number: 20180323237
    Abstract: A phase-change memory includes a strip of phase-change material that is coated with a conductive strip and surrounded by an insulator. The strip of phase-change material has a lower face in contact with tips of a resistive element. A connection network composed of several levels of metallization coupled with one another by conducting vias is provided above the conductive strip. At least one element of a lower level of the metallization is in direct contact with the upper surface of the conductive strip.
    Type: Application
    Filed: May 1, 2018
    Publication date: November 8, 2018
    Applicant: STMicroelectronics (Crolles 2) SAS
    Inventors: Pierre MORIN, Philippe BRUN, Laurent-Luc CHAPELON
  • Publication number: 20180315666
    Abstract: Integrated circuits are disclosed in which the strain properties of adjacent pFETs and nFETs are independently adjustable. The pFETs include compressive-strained SiGe on a silicon substrate, while the nFETs include tensile-strained silicon on a strain-relaxed SiGe substrate. Adjacent n-type and p-type FinFETs are separated by electrically insulating regions formed by a damascene process. During formation of the insulating regions, the SiGe substrate supporting the n-type devices is permitted to relax elastically, thereby limiting defect formation in the crystal lattice of the SiGe substrate.
    Type: Application
    Filed: July 5, 2018
    Publication date: November 1, 2018
    Inventors: Nicolas LOUBET, Pierre MORIN, Yann MIGNOT
  • Publication number: 20180301625
    Abstract: A phase change memory includes an L-shaped resistive element having a first part that extends between a layer of phase change material and an upper end of a conductive via and a second part that rests at least partially on the upper end of the conductive via and may further extend beyond a peripheral edge of the conductive via. The upper part of the conductive via is surrounded by an insulating material that is not likely to adversely react with the metal material of the resistive element.
    Type: Application
    Filed: April 16, 2018
    Publication date: October 18, 2018
    Applicants: STMicroelectronics (Crolles 2) SAS, STMicroelectronics S.r.l.
    Inventors: Pierre MORIN, Michel HAOND, Paola ZULIANI
  • Patent number: 10103174
    Abstract: A method for making a semiconductor device may include forming, on a first semiconductor layer of a semiconductor-on-insulator (SOI) wafer, a second semiconductor layer comprising a second semiconductor material different than a first semiconductor material of the first semiconductor layer. The method may further include performing a thermal treatment in a non-oxidizing atmosphere to diffuse the second semiconductor material into the first semiconductor layer, and removing the second semiconductor layer.
    Type: Grant
    Filed: December 10, 2015
    Date of Patent: October 16, 2018
    Assignee: STMicroelectronics, Inc.
    Inventors: Pierre Morin, Qing Liu, Nicolas Loubet
  • Patent number: 10068908
    Abstract: Methods and structures for forming a localized, strained region of a substrate are described. Trenches may be formed at boundaries of a localized region of a substrate. An upper portion of sidewalls at the localized region may be covered with a covering layer, and a lower portion of the sidewalls at the localized region may not be covered. A converting material may be formed in contact with the lower portion of the localized region, and the substrate heated. The heating may introduce a chemical species from the converting material into the lower portion, which creates stress in the localized region. The methods may be used to form strained-channel finFETs.
    Type: Grant
    Filed: April 17, 2017
    Date of Patent: September 4, 2018
    Assignee: STMicroelectronics, Inc.
    Inventors: Pierre Morin, Nicolas Loubet
  • Patent number: 10043805
    Abstract: Methods and structures for forming strained-channel finFETs are described. Fin structures for finFETs may be formed using two epitaxial layers of different lattice constants that are grown over a bulk substrate. A first thin, strained, epitaxial layer may be cut to form strain-relieved base structures for fins. The base structures may be constrained in a strained-relieved state. Fin structures may be epitaxially grown in a second layer over the base structures. The constrained base structures can cause higher amounts of strain to form in the epitaxially-grown fins than would occur for non-constrained base structures.
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: August 7, 2018
    Assignee: STMicroelectronics, Inc.
    Inventors: Pierre Morin, Nicolas Loubet
  • Patent number: 10037922
    Abstract: Integrated circuits are disclosed in which the strain properties of adjacent pFETs and nFETs are independently adjustable. The pFETs include compressive-strained SiGe on a silicon substrate, while the nFETs include tensile-strained silicon on a strain-relaxed SiGe substrate. Adjacent n-type and p-type FinFETs are separated by electrically insulating regions formed by a damascene process. During formation of the insulating regions, the SiGe substrate supporting the n-type devices is permitted to relax elastically, thereby limiting defect formation in the crystal lattice of the SiGe substrate.
    Type: Grant
    Filed: January 18, 2018
    Date of Patent: July 31, 2018
    Assignee: STMICROELECTRONICS, INC.
    Inventors: Nicolas Loubet, Pierre Morin, Yann Mignot
  • Patent number: 10032912
    Abstract: A modified silicon substrate having a substantially defect-free strain relaxed buffer layer of SiGe is suitable for use as a foundation on which to construct a high performance CMOS FinFET device. The substantially defect-free SiGe strain-relaxed buffer layer can be formed by making cuts in, or segmenting, a strained epitaxial film, causing edges of the film segments to experience an elastic strain relaxation. When the segments are small enough, the overall film is relaxed so that the film is substantially without dislocation defects. Once the substantially defect-free strain-relaxed buffer layer is formed, strained channel layers can be grown epitaxially from the relaxed SRB layer. The strained channel layers are then patterned to create fins for a FinFET device. In one embodiment, dual strained channel layers are formed—a tensilely strained layer for NFET devices, and a compressively strained layer for PFET devices.
    Type: Grant
    Filed: December 31, 2014
    Date of Patent: July 24, 2018
    Assignees: STMICROELECTRONICS, INC., GLOBALFOUNDRIES INC., INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Pierre Morin, Kangguo Cheng, Jody Fronheiser, Xiuyu Cai, Juntao Li, Shogo Mochizuki, Ruilong Xie, Hong He, Nicolas Loubet