Patents by Inventor Pierre-Yves Droz

Pierre-Yves Droz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230273305
    Abstract: The present disclosure relates to optical systems and methods of their operation. An example optical system includes an optical component and one or more light sources configured to emit a light signal. The light signal interacts with the optical component so as to provide an interaction light signal. The optical system also includes a detector configured to detect at least a portion of the interaction light signal as a detected light signal. The optical system additionally includes a controller configured to carry out operations including causing the one or more light sources to emit the light signal and receiving the detected light signal from the detector. The operations also include determining, based on the detected light signal, that one or more defects are associated with the optical component.
    Type: Application
    Filed: May 8, 2023
    Publication date: August 31, 2023
    Inventors: Ralph Shepard, Pierre-Yves Droz, Matthew Last, Bryce Remesch
  • Publication number: 20230275333
    Abstract: A vehicle having a communication system is disclosed. The system includes two electrical couplings, coupled by way of a rotary joint having a bearing waveguide. Each electrical coupling includes an interface waveguide configured to couple to external signals. Each electrical coupling also includes a waveguide section configured to propagate electromagnetic signals between the interface waveguide and the bearing waveguide of the rotary joint. Additionally, the rotary joint is configured to allow one electrical coupling to rotate with respect to the other electrical coupling. An axis of rotation of the rotary joint is defined by a center of a portion of the waveguides. Yet further, the rotary joint allows electromagnetic energy to propagate between the waveguides of the electrical couplings.
    Type: Application
    Filed: May 4, 2023
    Publication date: August 31, 2023
    Inventors: Zhe Li, Jamal Izadian, Pierre-yves Droz, Min Wang, Samuel Lenius, Paul Karplus, Kyla Purvis
  • Publication number: 20230275584
    Abstract: An example circuit includes a plurality of light emitters connected in parallel between a first node and a second node. The circuit also includes a plurality of capacitors, with each capacitor corresponding to one of the light emitters, and a plurality of discharge-control switches, with each discharge-control switches corresponding to one of the capacitors. The circuit further includes a pulse-control switch connected to the plurality of light emitters. During a first period, the pulse-control switch restricts current flow, and each of the plurality of capacitors is charged via the first node. During a second period, one or more of the plurality of discharge-control switches allows current flow that discharges one or more corresponding capacitors. During a third period, the pulse-control switch allows current flow that discharges one or more undischarged capacitors of the plurality of capacitors through one or more corresponding light emitters.
    Type: Application
    Filed: May 3, 2023
    Publication date: August 31, 2023
    Inventors: Pierre-yves Droz, Augusto Tazzoli, Michael Marx
  • Patent number: 11740333
    Abstract: Example embodiments relate to pulse energy plans for light detection and ranging (lidar) devices based on areas of interest and thermal budgets. An example lidar device includes a plurality of light emitters configured to emit light pulses into an environment in a plurality of different emission directions. The lidar device also includes circuitry configured to power the plurality of light emitters. Further, the lidar device includes a plurality of detectors configured to detect reflections of light pulses emitted by the plurality of light emitters. In addition, the lidar device includes a controller configured to (i) determine a pulse energy plan based on one or more regions of interest in the environment and a thermal budget and (ii) control the circuitry based on the pulse energy plan. The pulse energy plan specifies a pulse energy level for each light pulse emitted by each light emitter in the plurality of light emitters.
    Type: Grant
    Filed: April 2, 2020
    Date of Patent: August 29, 2023
    Assignee: Waymo LLC
    Inventors: Pierre-Yves Droz, Caner Onal, Simon Ellgas, Augusto Tazzoli
  • Patent number: 11726488
    Abstract: A light detection and ranging (LIDAR) device scans through a scanning zone while emitting light pulses and receives reflected signals corresponding to the light pulses. The LIDAR device scans the emitted light pulses through the scanning zone by reflecting the light pulses from an array of oscillating mirrors. The mirrors are operated by a set of electromagnets arranged to apply torque on the mirrors, and an orientation feedback system senses the orientations of the mirrors. Driving parameters for each mirror are determined based on information from the orientation feedback system. The driving parameters can be used to drive the mirrors in phase at an operating frequency despite variations in moments of inertia and resonant frequencies among the mirrors.
    Type: Grant
    Filed: November 1, 2021
    Date of Patent: August 15, 2023
    Assignee: Waymo LLC
    Inventors: Drew Ulrich, Pierre-yves Droz, Samuel Lenius
  • Patent number: 11726277
    Abstract: Systems and methods described herein relate to the manufacture of optical elements and optical systems. An example method includes providing a first substrate that has a plurality of light-emitter devices disposed on a first surface. The method includes providing a second substrate that has a mounting surface defining a reference plane. The method includes forming a structure and an optical spacer on the mounting surface of the second substrate. The method additionally includes coupling the first and second substrates together such that the first surface of the first substrate faces the mounting surface of the second substrate at an angle with respect to the reference plane.
    Type: Grant
    Filed: September 1, 2022
    Date of Patent: August 15, 2023
    Assignee: Waymo LLC
    Inventors: Pierre-Yves Droz, David Schleuning
  • Patent number: 11714233
    Abstract: One example LIDAR device comprises a substrate and a waveguide disposed on the substrate. A first section of the waveguide extends lengthwise on the substrate in a first direction. A second section of the waveguide extends lengthwise on the substrate in a second direction different than the first direction. A third section of the waveguide extends lengthwise on the substrate in a third direction different than the second direction. The second section extends lengthwise between the first section and the second section. The LIDAR device also comprises a light emitter configured to emit light. The waveguide is configured to guide the light inside the first section toward the second section, inside the second section toward the third section, and inside the third section away from the second section.
    Type: Grant
    Filed: June 8, 2022
    Date of Patent: August 1, 2023
    Assignee: Waymo LLC
    Inventors: James Dunphy, David Hutchison, Pierre-Yves Droz, Yeh-Jiun Tung
  • Patent number: 11714171
    Abstract: The present disclosure relates to limitation of noise on light detectors using an aperture. One example implementation includes a system. The system includes a lens that focuses light from a scene toward a focal plane. The system also includes an aperture defined within an opaque material. The system also includes a plurality of waveguides. A given waveguide of the plurality has an input end that receives a portion of light transmitted through the aperture, and guides the received portion toward an output end of the given waveguide. A cross-sectional area of the guided portion at the output end is greater than a cross-sectional area of the received portion at the input end. The system also includes an array of light detectors that detects the guided light transmitted through the output end.
    Type: Grant
    Filed: March 26, 2020
    Date of Patent: August 1, 2023
    Assignee: Waymo LLC
    Inventors: Pierre-Yves Droz, David Hutchison
  • Publication number: 20230221754
    Abstract: A method and system to provide timebase synchronization for multiple processors in a multi-processor sensor system, where each processor operates according to a respective reference clock, and where the processors' respective reference clocks are off sync from each other. An example method includes simultaneously injecting a synchronization pulse respectively into the multiple processors. Further, the method includes recording for each processor, according to the processor's respective reference clock, a respective synchronization-pulse timestamp of the simultaneously injected synchronization pulse, comparing the respective synchronization-pulse timestamps recorded for the processors, and, based on the comparing, computing for each processor a respective time offset. Additionally, the method includes using the per-processor computed time offsets as a basis to provide a synchronized timebase across the processors.
    Type: Application
    Filed: January 11, 2022
    Publication date: July 13, 2023
    Inventors: David Sobel, Pieter Kaspenberg, Pierre-Yves Droz, Srikanth Muroor
  • Patent number: 11686823
    Abstract: The present disclosure relates to limitation of noise on light detectors using an aperture. One example implementation includes a system. The system includes a lens disposed relative to a scene. The lens focuses light from the scene. The system also includes an opaque material that defines an aperture. The system also includes a waveguide having a first side that receives light focused by the lens and transmitted through the aperture. The waveguide guides the received light toward a second side of the waveguide opposite to the first side. The waveguide has a third side extending between the first side and the second side. The system also includes a mirror that reflects the guided light toward the third side of the waveguide. The system also includes an array of light detectors that detects the reflected light propagating out of the third side.
    Type: Grant
    Filed: June 8, 2020
    Date of Patent: June 27, 2023
    Assignee: Waymo LLC
    Inventors: Pierre-Yves Droz, David Neil Hutchison, Ralph Hamilton Shepard
  • Patent number: 11688917
    Abstract: A vehicle having a communication system is disclosed. The system includes two electrical couplings, coupled by way of a rotary joint having a bearing waveguide. Each electrical coupling includes an interface waveguide configured to couple to external signals. Each electrical coupling also includes a waveguide section configured to propagate electromagnetic signals between the interface waveguide and the bearing waveguide of the rotary joint. Additionally, the rotary joint is configured to allow one electrical coupling to rotate with respect to the other electrical coupling. An axis of rotation of the rotary joint is defined by a center of a portion of the waveguides. Yet further, the rotary joint allows electromagnetic energy to propagate between the waveguides of the electrical couplings.
    Type: Grant
    Filed: October 6, 2021
    Date of Patent: June 27, 2023
    Assignee: Waymo LLC
    Inventors: Zhe Li, Jamal Izadian, Pierre-yves Droz, Min Wang, Samuel Lenius, Paul Karplus, Kyla Purvis
  • Publication number: 20230194677
    Abstract: An optical receiver may include a plurality of photodetectors, a common processed data pipeline, and a plurality of processors. Outputs of the plurality of processors are communicatively coupled to the common processed data pipeline. Each processor is configured to accept input signals from a respective photodetector of the plurality of photodetectors. Each processor is also configured to process the input signals to provide processed data and output the processed data into a data stream of the common processed data pipeline according to one or more predetermined data locations. A method for using the optical receiver and a non-transitory computer readable medium are also described.
    Type: Application
    Filed: December 16, 2021
    Publication date: June 22, 2023
    Inventors: Pieter Kapsenberg, Pierre-Yves Droz, Sabareeshkumar Ravikumar
  • Patent number: 11681031
    Abstract: The present disclosure relates to optical systems and methods of their operation. An example optical system includes an optical component and one or more light sources configured to emit a light signal. The light signal interacts with the optical component so as to provide an interaction light signal. The optical system also includes a detector configured to detect at least a portion of the interaction light signal as a detected light signal. The optical system additionally includes a controller configured to carry out operations including causing the one or more light sources to emit the light signal and receiving the detected light signal from the detector. The operations also include determining, based on the detected light signal, that one or more defects are associated with the optical component.
    Type: Grant
    Filed: August 18, 2021
    Date of Patent: June 20, 2023
    Assignee: Waymo LLC
    Inventors: Ralph Shepard, Pierre-Yves Droz, Matthew Last, Bryce Remesch
  • Patent number: 11681030
    Abstract: Example embodiments relate to range calibration of light detectors. An example method includes emitting a first light signal toward a first region of a calibration target having a first reflectivity and detecting a reflection of the first light signal. The detected reflection of the first light signal has a first intensity. The example method further includes emitting a second light signal toward a second region of the calibration target having a second reflectivity and detecting a reflection of the second light signal from the second region of the calibration target. The detected reflection of the second light signal has a second intensity. Still further, the example method includes determining a first apparent range based on the detected reflection of the first light signal, determining a second apparent range based on the detected reflection of the second light signal, and generating walk-error calibration data for the detector.
    Type: Grant
    Filed: June 19, 2019
    Date of Patent: June 20, 2023
    Assignee: Waymo LLC
    Inventors: Luke Wachter, Pierre-Yves Droz
  • Patent number: 11681022
    Abstract: The present disclosure relates to systems and methods that include a monolithic, single-chip receiver. An example system includes a plurality of macropixels, each made up of an array of single photon avalanche diodes (SPADs). The system also includes a plurality of pipelined adders communicatively coupled to a respective portion of the plurality of macropixels. The system additionally includes a controller configured to carry out operations. The operations include during a listening period, receiving, at each pipelined adder of the plurality of pipelined adders, respective photosignals from the respective portion of the plurality of macropixels. The operations also include causing each pipelined adder of the plurality of pipelined adders to provide an output that includes a series of frames that provide an average number of SPADs of the respective portion of the plurality of macropixels that were triggered during a given listening period.
    Type: Grant
    Filed: April 29, 2020
    Date of Patent: June 20, 2023
    Assignee: Waymo LLC
    Inventors: Caner Onal, Pierre-Yves Droz
  • Publication number: 20230184908
    Abstract: Described herein are methods and systems for protecting a light detection and ranging (LIDAR) device against external light that is originated at a light source other than a light source of the LIDAR device and that is being emitted towards the LIDAR device. In particular, the LIDAR device may be equipped with a mitigation system that includes an interference filter, an absorptive filter, an adaptive filter, and/or a spatial filter. Additionally or alternatively, the LIDAR device may be operated to carry out reactive and/or proactive mitigation operations. For example, the LIDAR device may be operated to vary over time characteristics with which light is being emitted and to only detect light having characteristics that match the characteristics with which light is being emitted. In another example, the LIDAR device may be operated to activate a shutter to block the external light from being detected by the LIDAR device.
    Type: Application
    Filed: February 2, 2023
    Publication date: June 15, 2023
    Inventors: Simon Verghese, Pierre-Yves Droz, Mark Shand
  • Patent number: 11677398
    Abstract: An example circuit includes a plurality of light emitters connected in parallel between a first node and a second node. The circuit also includes a plurality of capacitors, with each capacitor corresponding to one of the light emitters, and a plurality of discharge-control switches, with each discharge-control switches corresponding to one of the capacitors. The circuit further includes a pulse-control switch connected to the plurality of light emitters. During a first period, the pulse-control switch restricts current flow, and each of the plurality of capacitors is charged via the first node. During a second period, one or more of the plurality of discharge-control switches allows current flow that discharges one or more corresponding capacitors. During a third period, the pulse-control switch allows current flow that discharges one or more undischarged capacitors of the plurality of capacitors through one or more corresponding light emitters.
    Type: Grant
    Filed: January 25, 2022
    Date of Patent: June 13, 2023
    Assignee: Waymo LLC
    Inventors: Pierre-yves Droz, Augusto Tazzoli, Michael Marx
  • Patent number: 11669101
    Abstract: A light detection and ranging (LIDAR) device scans through a scanning zone while emitting light pulses and receives reflected signals corresponding to the light pulses. The LIDAR device scans the emitted light pulses through the scanning zone by reflecting the light pulses from an array of oscillating mirrors. The mirrors are operated by a set of electromagnets arranged to apply torque on the mirrors, and an orientation feedback system senses the orientations of the mirrors. Driving parameters for each mirror are determined based on information from the orientation feedback system. The driving parameters can be used to drive the mirrors in phase at an operating frequency despite variations in moments of inertia and resonant frequencies among the mirrors.
    Type: Grant
    Filed: May 19, 2021
    Date of Patent: June 6, 2023
    Assignee: Waymo LLC
    Inventors: Drew Ulrich, Pierre-yves Droz, Samuel Lenius
  • Publication number: 20230170429
    Abstract: Example embodiments relate to controlling detection time in photodetectors. An example embodiment includes a device. The device includes a substrate. The device also includes a photodetector coupled to the substrate. The photodetector is arranged to detect light emitted from a light source that irradiates a top surface of the device. A depth of the substrate is at most 100 times a diffusion length of a minority carrier within the substrate so as to mitigate dark current arising from minority carriers photoexcited in the substrate based on the light emitted from the light source.
    Type: Application
    Filed: January 25, 2023
    Publication date: June 1, 2023
    Inventors: Caner Onal, Simon Verghese, Pierre-Yves Droz
  • Publication number: 20230135132
    Abstract: One example device comprises a plurality of emitters including at least a first emitter and a second emitter. The first emitter emits light that illuminates a first portion of a field-of-view (FOV) of the device. The second emitter emits light that illuminates a second portion of the FOV. The device also comprises a controller that obtains a scan of the FOV. The controller causes each emitter of the plurality of emitters to emit a respective light pulse during an emission time period associated with the scan. The controller causes the first emitter to emit a first-emitter light pulse at a first-emitter time offset from a start time of the emission time period. The controller causes the second emitter to emit a second-emitter light pulse at a second-emitter time offset from the start time of the emission time period.
    Type: Application
    Filed: December 29, 2022
    Publication date: May 4, 2023
    Inventors: Michael Marx, Pierre-Yves Droz