Patents by Inventor Pili Huang

Pili Huang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230255124
    Abstract: In some embodiments, the present disclosure relates to a method of forming an integrated chip. The method includes forming a reactivity reducing coating over one or more lower interconnect layers disposed over a substrate. A bottom electrode layer is formed on and in contact with the reactivity reducing coating. The bottom electrode layer has a first electronegativity that is less than or equal to a second electronegativity of the reactivity reducing coating. A data storage element is formed over the bottom electrode layer and a top electrode layer is formed over the data storage element. The top electrode layer, the data storage element, the reactivity reducing coating, and the bottom electrode layer are patterned to define a memory device.
    Type: Application
    Filed: April 14, 2023
    Publication date: August 10, 2023
    Inventors: Chao-Yang Chen, Chun-Yang Tsai, Kuo-Ching Huang, Wen-Ting Chu, Pili Huang, Cheng-Jun Wu
  • Publication number: 20230197847
    Abstract: The present disclosure relates to a method for forming a ferroelectric memory device. The method includes forming a dielectric layer over a semiconductor substrate and forming a first conductive layer over the dielectric layer. The first conductive layer has a first overall electronegativity. A ferroelectric layer is formed on the first conductive layer. The ferroelectric layer has a second overall electronegativity less than or equal to the first overall electronegativity. A second conductive layer is formed on the ferroelectric layer. The second conductive layer has a third overall electronegativity greater than or equal to the second overall electronegativity. The second conductive layer, the ferroelectric layer, and the first conductive layer are etched to form a polarization switching structure. An ILD layer is formed over the polarization switching structure, and a planarization process is performed on the ILD layer. A first conductive via is formed over the polarization switching structure.
    Type: Application
    Filed: February 23, 2023
    Publication date: June 22, 2023
    Inventors: Mickey Hsieh, Chun-Yang Tsai, Kuo-Ching Huang, Kuo-Chi Tu, Pili Huang, Cheng-Jun Wu, Chao-Yang Chen
  • Patent number: 11631810
    Abstract: In some embodiments, the present disclosure relates to an integrated chip. The integrated chip includes one or more lower interconnects arranged within a dielectric structure over a substrate. A bottom electrode is disposed over one of the one or more lower interconnects. The bottom electrode includes a first material having a first electronegativity. A data storage layer separates the bottom electrode from a top electrode. The bottom electrode is between the data storage layer and the substrate. A reactivity reducing layer includes a second material and has a second electronegativity that is greater than or equal to the first electronegativity. The second material contacts a lower surface of the bottom electrode that faces the substrate.
    Type: Grant
    Filed: April 19, 2021
    Date of Patent: April 18, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chao-Yang Chen, Chun-Yang Tsai, Kuo-Ching Huang, Wen-Ting Chu, Pili Huang, Cheng-Jun Wu
  • Patent number: 11594632
    Abstract: Various embodiments of the present disclosure are directed towards a ferroelectric memory device. The ferroelectric memory device includes a pair of source/drain regions disposed in a semiconductor substrate. A gate dielectric is disposed over the semiconductor substrate and between the source/drain regions. A first conductive structure is disposed on the gate dielectric. A ferroelectric structure is disposed on the first conductive structure. A second conductive structure is disposed on the ferroelectric structure, where both the first conductive structure and the second conductive structure have an overall electronegativity that is greater than or equal to an overall electronegativity of the ferroelectric structure.
    Type: Grant
    Filed: December 10, 2020
    Date of Patent: February 28, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Mickey Hsieh, Chun-Yang Tsai, Kuo-Ching Huang, Kuo-Chi Tu, Pili Huang, Cheng-Jun Wu, Chao-Yang Chen
  • Publication number: 20210242400
    Abstract: In some embodiments, the present disclosure relates to an integrated chip. The integrated chip includes one or more lower interconnects arranged within a dielectric structure over a substrate. A bottom electrode is disposed over one of the one or more lower interconnects. The bottom electrode includes a first material having a first electronegativity. A data storage layer separates the bottom electrode from a top electrode. The bottom electrode is between the data storage layer and the substrate. A reactivity reducing layer includes a second material and has a second electronegativity that is greater than or equal to the first electronegativity. The second material contacts a lower surface of the bottom electrode that faces the substrate.
    Type: Application
    Filed: April 19, 2021
    Publication date: August 5, 2021
    Inventors: Chao-Yang Chen, Chun-Yang Tsai, Kuo-Ching Huang, Wen-Ting Chu, Pili Huang, Cheng-Jun Wu
  • Patent number: 10985316
    Abstract: In some embodiments, the present disclosure relates to an integrated chip. The integrated chip includes one or more lower interconnect layers arranged within a dielectric structure over a substrate. A bottom electrode is disposed over one of the one or more lower interconnect layers. A lower surface of the bottom electrode includes a material having a first electronegativity. A data storage layer separates the bottom electrode from a top electrode. A reactivity reducing layer contacts the lower surface of the bottom electrode. The reactivity reducing layer has a second electronegativity that is greater than or equal to the first electronegativity.
    Type: Grant
    Filed: March 20, 2019
    Date of Patent: April 20, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chao-Yang Chen, Chun-Yang Tsai, Kuo-Ching Huang, Wen-Ting Chu, Pili Huang, Cheng-Jun Wu
  • Publication number: 20210098630
    Abstract: Various embodiments of the present disclosure are directed towards a ferroelectric memory device. The ferroelectric memory device includes a pair of source/drain regions disposed in a semiconductor substrate. A gate dielectric is disposed over the semiconductor substrate and between the source/drain regions. A first conductive structure is disposed on the gate dielectric. A ferroelectric structure is disposed on the first conductive structure. A second conductive structure is disposed on the ferroelectric structure, where both the first conductive structure and the second conductive structure have an overall electronegativity that is greater than or equal to an overall electronegativity of the ferroelectric structure.
    Type: Application
    Filed: December 10, 2020
    Publication date: April 1, 2021
    Inventors: Mickey Hsieh, Chun-Yang Tsai, Kuo-Ching Huang, Kuo-Chi Tu, Pili Huang, Cheng-Jun Wu, Chao-Yang Chen
  • Patent number: 10879391
    Abstract: Various embodiments of the present disclosure are directed towards a ferroelectric memory device. The ferroelectric memory device includes a pair of source/drain regions disposed in a semiconductor substrate. A gate dielectric is disposed over the semiconductor substrate and between the source/drain regions. A first conductive structure is disposed on the gate dielectric. A ferroelectric structure is disposed on the first conductive structure. A second conductive structure is disposed on the ferroelectric structure, where both the first conductive structure and the second conductive structure have an overall electronegativity that is greater than or equal to an overall electronegativity of the ferroelectric structure.
    Type: Grant
    Filed: May 7, 2019
    Date of Patent: December 29, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Mickey Hsieh, Chun-Yang Tsai, Kuo-Ching Huang, Kuo-Chi Tu, Pili Huang, Cheng-Jun Wu, Chao-Yang Chen
  • Publication number: 20200357927
    Abstract: Various embodiments of the present disclosure are directed towards a ferroelectric memory device. The ferroelectric memory device includes a pair of source/drain regions disposed in a semiconductor substrate. A gate dielectric is disposed over the semiconductor substrate and between the source/drain regions. A first conductive structure is disposed on the gate dielectric. A ferroelectric structure is disposed on the first conductive structure. A second conductive structure is disposed on the ferroelectric structure, where both the first conductive structure and the second conductive structure have an overall electronegativity that is greater than or equal to an overall electronegativity of the ferroelectric structure.
    Type: Application
    Filed: May 7, 2019
    Publication date: November 12, 2020
    Inventors: Mickey Hsieh, Chun-Yang Tsai, Kuo-Ching Huang, Kuo-Chi Tu, Pili Huang, Cheng-Jun Wu, Chao-Yang Chen
  • Publication number: 20200106011
    Abstract: In some embodiments, the present disclosure relates to an integrated chip. The integrated chip includes one or more lower interconnect layers arranged within a dielectric structure over a substrate. A bottom electrode is disposed over one of the one or more lower interconnect layers. A lower surface of the bottom electrode includes a material having a first electronegativity. A data storage layer separates the bottom electrode from a top electrode. A reactivity reducing layer contacts the lower surface of the bottom electrode. The reactivity reducing layer has a second electronegativity that is greater than or equal to the first electronegativity.
    Type: Application
    Filed: March 20, 2019
    Publication date: April 2, 2020
    Inventors: Chao-Yang Chen, Chun-Yang Tsai, Kuo-Ching Huang, Wen-Ting Chu, Pili Huang, Cheng-Jun Wu