Patents by Inventor Pinger Wang

Pinger Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090053807
    Abstract: Peptide sequences capable of binding to insulin and/or insulin-like growth factor receptors with either agonist or antagonist activity and identified from various peptide libraries are disclosed. This invention also identifies at least two different binding sites, which are present on insulin and insulin-like growth factor receptors, and which selectively bind the peptides of this invention. As agonists, the peptides of this invention may be useful for development as therapeutics to supplement or replace endogenous peptide hormones. The antagonist peptides may also be developed as therapeutics.
    Type: Application
    Filed: December 3, 2007
    Publication date: February 26, 2009
    Applicants: Novo Nordisk A/S, Antyra Inc.
    Inventors: Renuka Pillutla, Olga Dedova, Arthur J. Blume, Neil I. Goldstein, Renee Brissette, Pinger Wang, Hao Liu, Ku-chuan Hsiao, Michael Lennick, Paul Fletcher
  • Patent number: 7173005
    Abstract: Peptide sequences capable of binding to insulin and/or insulin-like growth factor receptors with either agonist or antagonist activity and identified from various peptide libraries are disclosed. This invention also identifies at least two different binding sites, which are present on insulin and insulin-like growth factor receptors, and which selectively bind the peptides of this invention. As agonists, the peptides of this invention may be useful for development as therapeutics to supplement or replace endogenous peptide hormones. The antagonist peptides may also be developed as therapeutics.
    Type: Grant
    Filed: September 24, 2002
    Date of Patent: February 6, 2007
    Assignees: Antyra Inc., Novo Nordisk A/S
    Inventors: Renuka Pillutla, Olga Dedova, Arthur J. Blume, Neil I. Goldstein, Renee Brissette, Pinger Wang, Hao Liu, Ku-Chuan Hsiao, Michael Lennick, Paul Fletcher
  • Publication number: 20070004634
    Abstract: Peptide sequences capable of binding to insulin and/or insulin-like growth factor receptors with either agonist or antagonist activity and identified from various peptide libraries are disclosed. This invention also identifies at least two different binding sites, which are present on insulin and insulin-like growth factor receptors, and which selectively bind the peptides of this invention. As agonists, the peptides of this invention may be useful for development as therapeutics to supplement or replace endogenous peptide hormones. The antagonist peptides may also be developed as therapeutics.
    Type: Application
    Filed: April 24, 2006
    Publication date: January 4, 2007
    Applicants: Novo Nordisk A/S, Antyra Inc.
    Inventors: Renuka Pillutla, Olga Dedova, Arthur Blume, Neil Goldstein, Renee Brissette, Pinger Wang, Hao Liu, Ku-chuan Hsiao, Michael Lennick, Paul Fletcher
  • Patent number: 7019126
    Abstract: Disclosed are recombinant plant cells, plant cell parts, plant parts and transgenic plants containing a DNA molecule comprising a sequence encoding a Pokeweed Antiviral Protein (PAP) II protein. PAP II proteins include full length, wild-type PAP II and substantially nontoxic mutants or analogs including fragments thereof truncated at the C-terminus and other PAP II proteins having an intact catalytic active site amino acid residue E172 but that also have at least one amino acid substitution or deletion, and possess anti-viral and/or anti-fungal activity. DNA molecules comprising sequences encoding the mutants or analogs, as well as the isolated and purified PAP II proteins per se, are also disclosed. Methods of identifying nontoxic PAP II mutants are further disclosed. Transgenic plants that produce a PAP II protein exhibit anti-viral and/or anti-fungal activity. Virtually all flowering plants are included. Seed derived from the transgenic plants are also provided.
    Type: Grant
    Filed: November 22, 2000
    Date of Patent: March 28, 2006
    Assignee: Rutgers, The State University
    Inventors: Nilgun E. Turner, Pinger Wang
  • Publication number: 20050183162
    Abstract: Disclosed are recombinant plant cells, plant cell parts, plant parts and transgenic plants containing a DNA molecule comprising a sequence encoding a Pokeweed Antiviral Protein (PAP) II protein. PAP II proteins include full length, wild-type PAP II and substantially nontoxic mutants or analogs including fragments thereof truncated at the C-terminus and other PAP II proteins having an intact catalytic active site amino acid residue E172 but that also have at least one amino acid substitution or deletion, and possess anti-viral and/or anti-fungal activity. DNA molecules comprising sequences encoding the mutants or analogs, as well as the isolated and purified PAP II proteins per se, are also disclosed. Methods of identifying nontoxic PAP II mutants are further disclosed. Transgenic plants that produce a PAP II protein exhibit anti-viral and/or anti-fungal activity. Virtually all flowering plants are included. Seed derived from the transgenic plants are also provided.
    Type: Application
    Filed: April 14, 2005
    Publication date: August 18, 2005
    Applicant: Rutgers, The State University
    Inventors: Nilgun Tumer, Pinger Wang
  • Publication number: 20040023887
    Abstract: Peptide sequences capable of binding to insulin and/or insulin-like growth factor receptors with either agonist or antagonist activity and identified from various peptide libraries are disclosed. This invention also identifies at least two different binding sites, which are present on insulin and insulin-like growth factor receptors, and which selectively bind the peptides of this invention. As agonists, the peptides of this invention may be useful for development as therapeutics to supplement or replace endogenous peptide hormones. The antagonist peptides may also be developed as therapeutics.
    Type: Application
    Filed: September 24, 2002
    Publication date: February 5, 2004
    Inventors: Renuka Pillutla, Olga Dedova, Arthur J. Blume, Neil I. Goldstein, Renee Brissette, Pinger Wang, Hao Liu, Ku-Chuan Hsiao, Michael Lennick, Paul Fletcher