Patents by Inventor Piotr Przybyszewski

Piotr Przybyszewski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10980430
    Abstract: In one embodiment of the invention, a cuff-less blood pressure measuring system is disclosed including cuff-less blood pressure scanner with a vital signs signal processor having an adaptive blood pressure model. A machine learning process is further disclosed to tune the adaptive blood pressure model of the cuff-less blood pressure measuring system to the user.
    Type: Grant
    Filed: March 10, 2017
    Date of Patent: April 20, 2021
    Assignee: HEALTHY.IO LTD.
    Inventors: Piotr Przybyszewski, Eunseog Youn, Walter De Brouwer, Brian G. La Plume, Babak Aghazadeh, Maxim Akhterov
  • Patent number: 10485434
    Abstract: A blood pressure monitoring device includes a body portion having a size and structure to extend around an appendage of a user during use, a fluid bladder at least one of attached to or integral with the body portion and arranged to be able to apply pressure to an adjacent artery or vein of the user during use, a pressure actuator fluidly connected to the fluid bladder, a controller configured to provide control signals to the pressure actuator to fill the fluid bladder to selected pressures, a signal processor configured to communicate with the controller to receive signals indicating the selected pressures to which the fluid bladder is filled, and a pressure sensor arranged in operative contact with the fluid bladder to measure blood pressure waveforms plus bladder fluid pressure to provide a pressure waveform signal containing information regarding a relationship between vessel distention and transmural pressure.
    Type: Grant
    Filed: February 3, 2017
    Date of Patent: November 26, 2019
    Assignee: ANGILYTICS, INC.
    Inventors: Xiaoding Zhuo, Piotr Przybyszewski
  • Patent number: 10463851
    Abstract: An implantable stimulation system comprises a stimulator for generating electrical stimulation and a conductive stimulation lead having a proximal end electrically coupled to the stimulator, wherein at least a first component of the impedance looking into the stimulator is substantially matched to the impedance of the stimulation lead. At least one distal stimulation electrode is positioned proximate the distal end of the stimulation lead.
    Type: Grant
    Filed: May 8, 2017
    Date of Patent: November 5, 2019
    Assignee: MEDTRONIC, INC.
    Inventors: Piotr Przybyszewski, Carl D. Wahlstrand, Timothy J. Davis, Gregory A. Hrdlicka, James M. Olsen
  • Publication number: 20190298193
    Abstract: In one embodiment, a system comprises a band; a pressure actuator to apply external pressure through the band to a part of a human body; circuitry to control the pressure actuator to apply the external pressure changing only in a pressure range less than 80 mmHg in a measurement mode; a pressure sensor to sense, from the band, a waveform signal responsive to an application of the external pressure by the pressure actuator in the measurement mode, wherein the waveform signal is indicative of a pressure response of arterial pressure; a pulse waveform velocity (PWV) sensor to sense one or more signals associated with PWV; and a processor to calculate a blood pressure value based on the waveform signal from the pressure sensor and the signal(s) associated with PWV.
    Type: Application
    Filed: June 11, 2019
    Publication date: October 3, 2019
    Inventors: Xiaoding Zhuo KRAUSE, Piotr PRZYBYSZEWSKI
  • Publication number: 20170258340
    Abstract: In one embodiment of the invention, a cuff-less blood pressure measuring system is disclosed including cuff-less blood pressure scanner with a vital signs signal processor having an adaptive blood pressure model. A machine learning process is further disclosed to tune the adaptive blood pressure model of the cuff-less blood pressure measuring system to the user.
    Type: Application
    Filed: March 10, 2017
    Publication date: September 14, 2017
    Inventors: Piotr Przybyszewski, Eunseog Youn, Walter De Brouwer, Brian G. La Plume, Babak Aghazadeh, Maxim Akhterov
  • Publication number: 20170239460
    Abstract: An implantable stimulation system comprises a stimulator for generating electrical stimulation and a conductive stimulation lead having a proximal end electrically coupled to the stimulator, wherein at least a first component of the impedance looking into the stimulator is substantially matched to the impedance of the stimulation lead. At least one distal stimulation electrode is positioned proximate the distal end of the stimulation lead.
    Type: Application
    Filed: May 8, 2017
    Publication date: August 24, 2017
    Inventors: Piotr Przybyszewski, Carl D. Wahlstrand, Timothy J. Davis, Gregory A. Hrdlicka, James M. Olsen
  • Publication number: 20170215749
    Abstract: A blood pressure monitoring device includes a body portion having a size and structure to extend around an appendage of a user during use, a fluid bladder at least one of attached to or integral with the body portion and arranged to be able to apply pressure to an adjacent artery or vein of the user during use, a pressure actuator fluidly connected to the fluid bladder, a controller configured to provide control signals to the pressure actuator to fill the fluid bladder to selected pressures, a signal processor configured to communicate with the controller to receive signals indicating the selected pressures to which the fluid bladder is filled, and a pressure sensor arranged in operative contact with the fluid bladder to measure blood pressure waveforms plus bladder fluid pressure to provide a pressure waveform signal containing information regarding a relationship between vessel distention and transmural pressure.
    Type: Application
    Filed: February 3, 2017
    Publication date: August 3, 2017
    Inventors: Xiaoding Zhuo, Piotr Przybyszewski
  • Patent number: 9643009
    Abstract: An implantable stimulation system comprises a stimulator for generating electrical stimulation and a conductive stimulation lead having a proximal end electrically coupled to the stimulator, wherein at least a first component of the impedance looking into the stimulator is substantially matched to the impedance of the stimulation lead. At least one distal stimulation electrode is positioned proximate the distal end of the stimulation lead.
    Type: Grant
    Filed: March 1, 2016
    Date of Patent: May 9, 2017
    Assignee: MEDTRONIC, INC.
    Inventors: Piotr Przybyszewski, Carl D. Wahlstrand, Timothy J. Davis, Gregory A. Hrdlicka, James M. Olsen
  • Patent number: 9272144
    Abstract: An implantable stimulation system comprises a stimulator for generating electrical stimulation and a conductive stimulation lead having a proximal end electrically coupled to the stimulator, wherein at least a first component of the impedance looking into the stimulator is substantially matched to the impedance of the stimulation lead. At least one distal stimulation electrode is positioned proximate the distal end of the stimulation lead.
    Type: Grant
    Filed: March 18, 2015
    Date of Patent: March 1, 2016
    Assignee: MEDTRONIC, INC.
    Inventors: Piotr Przybyszewski, Carl D. Wahlstrand, Timothy J. Davis, Gregory A. Hrdlicka, James M. Olsen
  • Publication number: 20150190640
    Abstract: An implantable stimulation system comprises a stimulator for generating electrical stimulation and a conductive stimulation lead having a proximal end electrically coupled to the stimulator, wherein at least a first component of the impedance looking into the stimulator is substantially matched to the impedance of the stimulation lead. At least one distal stimulation electrode is positioned proximate the distal end of the stimulation lead.
    Type: Application
    Filed: March 18, 2015
    Publication date: July 9, 2015
    Inventors: Piotr Przybyszewski, Carl D. Wahlstrand, Timothy J. Davis, Gregory A. Hrdlicka, James M. Olsen
  • Patent number: 8989840
    Abstract: An implantable stimulation system comprises a stimulator for generating electrical stimulation and a conductive stimulation lead having a proximal end electrically coupled to the stimulator, wherein at least a first component of the impedance looking into the stimulator is substantially matched to the impedance of the stimulation lead. At least one distal stimulation electrode is positioned proximate the distal end of the stimulation lead.
    Type: Grant
    Filed: March 2, 2005
    Date of Patent: March 24, 2015
    Assignee: Medtronic, Inc.
    Inventors: Piotr Przybyszewski, Carl D. Wahlstrand, Timothy J. Davis, Gregory A. Hrdlicka, James M. Olsen
  • Patent number: 7912552
    Abstract: A medical device including an elongate lead connected to a pulse generator connector further includes a passive lossy circuit electrically connected in between a distal portion of the lead conductor and the high frequency-grounded surface. The passive lossy circuit has a high frequency impedance approximately equal to a characteristic impedance of the lead when implanted in a body and dissipates energy of an incident wave formed along the lead, thereby diminishing a reflection of the incident wave, the incident wave being induced by exposure of the medical device to a high frequency electromagnetic field. The passive lossy circuit further has low pass properties allowing for normal device operation.
    Type: Grant
    Filed: July 12, 2004
    Date of Patent: March 22, 2011
    Assignee: Medtronic, Inc.
    Inventor: Piotr Przybyszewski
  • Patent number: 7672731
    Abstract: An implantable device, such as an implantable medical device (IMD) includes at least two radio frequency (RF) antennas and may additionally include an RF communication circuit. The RF antennas are spatially diverse, are disposed adjacent a housing, and are each configured to receive RF signals transmitted to the IMD from a remote RF signal source. The RF communication circuit, if included, is disposed within the housing and is configured to selectively receive the RF signals received by one or more of the spatially diverse RF antennas.
    Type: Grant
    Filed: April 20, 2005
    Date of Patent: March 2, 2010
    Assignee: Medtronic, Inc.
    Inventors: Garry L. Dublin, Gregory J. Haubrich, Chris C. Fuller, Piotr Przybyszewski, Len D. Twetan, William D. Verhoef
  • Patent number: 7467014
    Abstract: An implantable medical device (“IMD”) configured in accordance with an example embodiment of the invention generally includes a housing, a connector header block coupled to the housing, a dielectric sheath located around at least a portion of the housing and/or around at least a portion of the header block, and a telemetry antenna located within the dielectric sheath. The antenna is configured to support far field telemetry with an external device such as a programmer. In one example embodiment, the antenna is configured as a balanced antenna having two separate antenna elements driven 180 degrees out of phase. Each of the antenna elements has a feed point on a perimeter edge of the IMD housing and a floating endpoint. A number of alternate embodiments are also provided.
    Type: Grant
    Filed: April 28, 2005
    Date of Patent: December 16, 2008
    Assignee: Medtronic, Inc.
    Inventors: Christopher C. Fuller, William D. Verhoef, Gregory J. Haubrich, Javaid Masoud, George C. Rosar, Garry L. Dublin, Piotr Przybyszewski
  • Publication number: 20080021522
    Abstract: An implantable medical device (“IMD”) configured in accordance with an example embodiment of the invention generally includes a housing, a connector header block coupled to the housing, and a telemetry antenna located within the header block. The header block is formed from a dielectric material, which encapsulates the antenna. The antenna is configured to support far field telemetry with an external device such as a programmer. In one example embodiment, the antenna is formed from a thin round wire, has a feed point on the top perimeter sidewall of the housing, and has a floating endpoint in the header block. The antenna is contoured to form a simple curve in a plane that is approximately parallel with the major sides of the housing.
    Type: Application
    Filed: July 3, 2007
    Publication date: January 24, 2008
    Applicant: MEDTRONIC, INC.
    Inventors: William VERHOEF, Piotr PRZYBYSZEWSKI, Christopher FULLER, Gregory HAUBRICH, Garry DUBLIN, David NGHIEM, Rodney WALLACE
  • Patent number: 7317946
    Abstract: A telemetry antenna for an implantable medical device includes one or more portions having a non-linear configuration. In some embodiments, the non-linear configuration provides an antenna having a greater antenna length than the linear lengthwise dimension of the antenna structure. In some embodiments, the non-linear configuration is a serpentine pattern.
    Type: Grant
    Filed: March 10, 2004
    Date of Patent: January 8, 2008
    Assignee: Medtronic, Inc.
    Inventors: Len D. Twetan, Piotr Przybyszewski, Garry L. Dublin, Gregory J. Haubrich, Andrina J. Hougham, Andrew J. Ries, David B. Engmark, Gary M. Grose
  • Publication number: 20060247712
    Abstract: An implantable medical device (“IMD”) configured in accordance with an example embodiment of the invention generally includes a housing, a connector header block coupled to the housing, a dielectric sheath located around at least a portion of the housing and/or around at least a portion of the header block, and a telemetry antenna located within the dielectric sheath. The antenna is configured to support far field telemetry with an external device such as a programmer. In one example embodiment, the antenna is configured as a balanced antenna having two separate antenna elements driven 180 degrees out of phase. Each of the antenna elements has a feed point on a perimeter edge of the IMD housing and a floating endpoint. A number of alternate embodiments are also provided.
    Type: Application
    Filed: April 28, 2005
    Publication date: November 2, 2006
    Inventors: Christopher Fuller, William Verhoef, Gregory Haubrich, Javaid Masoud, George Rosar, Garry Dublin, Piotr Przybyszewski
  • Publication number: 20060247711
    Abstract: An implantable medical device (“IMD”) configured in accordance with an example embodiment of the invention generally includes a housing, a connector header block coupled to the housing, and a telemetry antenna located within the header block. The header block is formed from a dielectric material, which encapsulates the antenna. The antenna is configured to support far field telemetry with an external device such as a programmer. In one example embodiment, the antenna is formed from a thin round wire, has a feed point on the top perimeter sidewall of the housing, and has a floating endpoint in the header block. The antenna is contoured to form a simple curve in a plane that is approximately parallel with the major sides of the housing.
    Type: Application
    Filed: April 28, 2005
    Publication date: November 2, 2006
    Inventors: William Verhoef, Piotr Przybyszewski, Christopher Fuller, Gregory Haubrich, Garry Dublin
  • Publication number: 20060241724
    Abstract: An implantable device, such as an implantable medical device (IMD) includes at least two radio frequency (RF) antennas and may additionally include an RF communication circuit. The RF antennas are spatially diverse, are disposed adjacent a housing, and are each configured to receive RF signals transmitted to the IMD from a remote RF signal source. The RF communication circuit, if included, is disposed within the housing and is configured to selectively receive the RF signals received by one or more of the spatially diverse RF antennas.
    Type: Application
    Filed: April 20, 2005
    Publication date: October 26, 2006
    Inventors: Garry Dublin, Gregory Haubrich, Chris Fuller, Piotr Przybyszewski, Len Twetan, William Verhoef
  • Publication number: 20060009819
    Abstract: A medical device including an elongate lead connected to a pulse generator connector further includes a passive lossy circuit electrically connected in between a distal portion of the lead conductor and the high frequency-grounded surface. The passive lossy circuit has a high frequency impedance approximately equal to a characteristic impedance of the lead when implanted in a body and dissipates energy of an incident wave formed along the lead, thereby diminishing a reflection of the incident wave, the incident wave being induced by exposure of the medical device to a high frequency electromagnetic field. The passive lossy circuit further has low pass properties allowing for normal device operation.
    Type: Application
    Filed: July 12, 2004
    Publication date: January 12, 2006
    Inventor: Piotr Przybyszewski