Patents by Inventor Po-Cheng Kuo

Po-Cheng Kuo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20040084298
    Abstract: Techniques for fabricating magnetic granular films for high-density magnetic data storage, where magnetic grains are dispersed in a non-magnetic amorphous matrix and each are surrounded by a grain-confining material which inhibits growth of grains during annealing.
    Type: Application
    Filed: October 31, 2002
    Publication date: May 6, 2004
    Inventors: Y.D. Yao, Po-Cheng Kuo, Sheng-Chi Chen, An Cheng Sun, Chen-Chieh Chiang
  • Publication number: 20020154596
    Abstract: A super-resolution recordable optical disk includes a substrate and forms sequentially on the substrate an under dielectric layer, a mask layer, an interface layer, an organic dye layer, an isolation layer, and a protection layer. A laser beam is projected into the organic dye layer through the substrate to record signals. And a super-resolution recordable optical disk for high numerical apertures also is provided that includes a substrate and forms sequentially on the substrate an organic dye layer, an interface layer, a mask layer an under dielectric layer, and a thin polycarbonate layer. A laser beam is projected into the organic dye layer through the thin polycarbonate layer to record signals.
    Type: Application
    Filed: April 22, 2002
    Publication date: October 24, 2002
    Applicant: Industrial Technology Research Institute
    Inventors: Wei-Chih Hsu, Song-Yeu Tsai, Mei-Rurng Tseng, Shih-Peng Hsu, Tien-Tsan Hung, Po-Cheng Kuo
  • Publication number: 20010040841
    Abstract: A recording method including a read/write optical assembly combining near-field optical writing and magnetic flux reading is invented. The multi-layer structure and properties of media suitable for this recording method is disclosed. Near-field optical writing (such as solid immersion lens, SIL) with/without external magnetic field can shrink the size of the recorded spot substantially. The GMR (Giant Magneto-Resistive) or TMR (Tunneling Magneto-Resistive) device has the advantage of high-resolution for sensing magnetic flux. Taking advantage of both devices, a new high-density data recording system, which consists of near-field optical writing and magnetic flux detection, can be developed. Thus, areal recording density of the re-writable optical disk can be increased substantially.
    Type: Application
    Filed: December 14, 2000
    Publication date: November 15, 2001
    Inventors: Han-Ping David Shieh, Po-Cheng Kuo, Wei-Chih Hsu
  • Patent number: 6183606
    Abstract: A method of producing high coercivity FePt—Si3N4 granular composite thin films for magnetic recording media is invented. The method includes magnetron co-sputtering of FePt and Si3N4 targets at controlled sputtering power and sputtering argon gas pressure to form a selective composition of granular FePt—Si3N4 thin film on a low temperature substrate, then post-annealed in vacuum at selective time period and temperature. Two kinds of FePt targets can be used. One is the FePt alloy target. The other one is a composite target consisting of an iron disk overlaid with small Pt pieces. This arrangement provides a wide range of effective target compositions and therefore film compositions. FePt—Si3N4 films were deposited on natural oxidized silicon wafer or quartz glass substrate at room temperature. The as-deposited film has soft magnetic properties and granular structure with soft magnetic &ggr;-FePt particles dispersed in amorphous Si3N4 matrix.
    Type: Grant
    Filed: November 3, 1999
    Date of Patent: February 6, 2001
    Assignee: National Science Council of Republic of China
    Inventors: Po-Cheng Kuo, Chih-Ming Kuo
  • Patent number: 6117282
    Abstract: A method of producing SiNx protected amorphous Co-Tb thin films with high coercivity for longitudinal and perpendicular magnetic recording media is described. The method includes magnetron sputtering at controlled sputtering power and sputtering argon gas pressure to form a selective composition of amorphous Co-Tb thin film on a low temperature substrate. After the Co-Tb film is deposited, a protective SiNx layer with thickness of 100 .ANG. was produced on the film. The as-deposited film has an amorphous structure with a high value of coercivity, and its magnetic easy-axis is perpendicular to the film plane. This film can be used as a perpendicular magnetic recording medium. After low temperature annealing at controlled conditions for a desirable temperature and time period in vacuum, the film also has an amorphous structure but its magnetic properties are isotropic. This film can be used as a longitudinal magnetic recording medium.
    Type: Grant
    Filed: September 23, 1997
    Date of Patent: September 12, 2000
    Inventors: Po-Cheng Kuo, Chih-Ming Kuo