Patents by Inventor Polly Wanda Chu

Polly Wanda Chu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230405974
    Abstract: A glass element having a thickness from 25 ?m to 125 ?m, a first primary surface, a second primary surface, and a compressive stress region extending from the first primary surface to a first depth, the region defined by a compressive stress ?I of at least about 100 MPa at the first primary surface. Further, the glass element has a stress profile such that it does not fail when it is subject to 200,000 cycles of bending to a target bend radius of from 1 mm to 20 mm, by the parallel plate method. Still further, the glass element has a puncture resistance of greater than about 1.5 kgf when the first primary surface of the glass element is loaded with a tungsten carbide ball having a diameter of 1.5 mm.
    Type: Application
    Filed: August 3, 2023
    Publication date: December 21, 2023
    Inventors: Theresa Chang, Polly Wanda Chu, Patrick Joseph Cimo, Adam James Ellison, Timothy Michael Gross, Guangli Hu, Nicholas James Smith, Butchi Reddy Vaddi, Natesan Venkataraman
  • Patent number: 11745471
    Abstract: A glass element having a thickness from 25 ?m to 125 ?m, a first primary surface, a second primary surface, and a compressive stress region extending from the first primary surface to a first depth, the region defined by a compressive stress GI of at least about 100 MPa at the first primary surface. Further, the glass element has a stress profile such that it does not fail when it is subject to 200,000 cycles of bending to a target bend radius of from 1 mm to 20 mm, by the parallel plate method. Still further, the glass element has a puncture resistance of greater than about 1.5 kgf when the first primary surface of the glass element is loaded with a tungsten carbide ball having a diameter of 1.5 mm.
    Type: Grant
    Filed: June 13, 2022
    Date of Patent: September 5, 2023
    Assignee: Corning Incorporated
    Inventors: Theresa Chang, Polly Wanda Chu, Patrick Joseph Cimo, Adam James Ellison, Timothy Michael Gross, Guangli Hu, Nicholas James Smith, Butchi Reddy Vaddi, Natesan Venkataraman
  • Publication number: 20220324202
    Abstract: A glass element having a thickness from 25 ?m to 125 ?m, a first primary surface, a second primary surface, and a compressive stress region extending from the first primary surface to a first depth, the region defined by a compressive stress GI of at least about 100 MPa at the first primary surface. Further, the glass element has a stress profile such that it does not fail when it is subject to 200,000 cycles of bending to a target bend radius of from 1 mm to 20 mm, by the parallel plate method. Still further, the glass element has a puncture resistance of greater than about 1.5 kgf when the first primary surface of the glass element is loaded with a tungsten carbide ball having a diameter of 1.5 mm.
    Type: Application
    Filed: June 13, 2022
    Publication date: October 13, 2022
    Inventors: Theresa Chang, Polly Wanda Chu, Patrick Joseph Cimo, Adam James Ellison, Timothy Michael Gross, Guangli Hu, Nicholas James Smith, Butchi Reddy Vaddi, Natesan Venkataraman
  • Patent number: 11358372
    Abstract: A glass element having a thickness from 25 ?m to 125 ?m, a first primary surface, a second primary surface, and a compressive stress region extending from the first primary surface to a first depth, the region defined by a compressive stress GI of at least about 100 MPa at the first primary surface. Further, the glass element has a stress profile such that it does not fail when it is subject to 200,000 cycles of bending to a target bend radius of from 1 mm to 20 mm, by the parallel plate method. Still further, the glass element has a puncture resistance of greater than about 1.5 kgf when the first primary surface of the glass element is loaded with a tungsten carbide ball having a diameter of 1.5 mm.
    Type: Grant
    Filed: October 5, 2020
    Date of Patent: June 14, 2022
    Assignee: Corning Incorporated
    Inventors: Theresa Chang, Polly Wanda Chu, Patrick Joseph Cimo, Adam James Ellison, Timothy Michael Gross, Guangli Hu, Nicholas James Smith, Butchi Reddy Vaddi, Natesan Venkataraman
  • Patent number: 11279114
    Abstract: A glass article having a first glass layer, a second glass layer disposed adjacent to the first glass layer, and an interface slidably coupling the first glass layer to the second glass layer. The interface has a thickness of from 2 nm to 500 nm. The glass article is characterized by: (a) an absence of failure when the article is held at a parallel plate separation distance of 10 mm for 60 minutes at 25° C. and 50% relative humidity; (b) a puncture resistance of greater than about 6 kgf when the second glass layer is supported by (i) a 50 ?m thick pressure-sensitive adhesive having an elastic modulus of less than 1 GPa and (ii) an approximately 100 ?m thick polyethylene terephthalate layer having an elastic modulus of less than 10 GPa, and the first glass layer is loaded with a tungsten carbide ball having a 1 mm diameter.
    Type: Grant
    Filed: October 27, 2017
    Date of Patent: March 22, 2022
    Assignee: Corning Incorporated
    Inventors: Shinu Baby, Dana Craig Bookbinder, Polly Wanda Chu, Timothy Michael Gross, Yousef Kayed Qaroush
  • Publication number: 20210206145
    Abstract: A cover element for a foldable electronic device that includes a foldable glass element, first and second primary surfaces, and a compressive stress region extending from the first primary surface to a first depth that is defined by a stress ?I of at least about 100 MPa in compression at the first primary surface. The device also includes a polymeric layer disposed over the first primary surface. The glass element has a stress profile such that when the glass element is bent to a target bend radius of from 1 mm to 20 mm, to induce a bending stress ?B at the first primary surface in tension, ?I+?B<400 MPa (in tension). Further, the cover element can withstand a pen drop height of at least 1.5 times that of a control pen drop height of the cover element without the layer according to a Drop Test 1.
    Type: Application
    Filed: March 25, 2021
    Publication date: July 8, 2021
    Inventors: Polly Wanda CHU, Michael Patrick Donovan, Timothy Michael Gross, Louis Mattos, JR., Prakash Chandra Panda, Robert Lee Smith, III
  • Patent number: 10974487
    Abstract: A cover element for a foldable electronic device that includes a foldable glass element, first and second primary surfaces, and a compressive stress region extending from the first primary surface to a first depth that is defined by a stress ?I of at least about 100 MPa in compression at the first primary surface. The device also includes a polymeric layer disposed over the first primary surface. The glass element has a stress profile such that when the glass element is bent to a target bend radius of from 1 mm to 20 mm, to induce a bending stress ?B at the first primary surface in tension, ?I+?B<400 MPa (in tension). Further, the cover element can withstand a pen drop height of at least 1.5 times that of a control pen drop height of the cover element without the layer according to a Drop Test 1.
    Type: Grant
    Filed: August 31, 2018
    Date of Patent: April 13, 2021
    Assignee: Corning Incorporated
    Inventors: Polly Wanda Chu, Michael Patrick Donovan, Timothy Michael Gross, Louis Mattos, Jr., Prakash Chandra Panda, Robert Lee Smith, III
  • Publication number: 20210034112
    Abstract: A glass element having a thickness from 25 ?m to 125 ?m, a first primary surface, a second primary surface, and a compressive stress region extending from the first primary surface to a first depth, the region defined by a compressive stress GI of at least about 100 MPa at the first primary surface. Further, the glass element has a stress profile such that it does not fail when it is subject to 200,000 cycles of bending to a target bend radius of from 1 mm to 20 mm, by the parallel plate method. Still further, the glass element has a puncture resistance of greater than about 1.5 kgf when the first primary surface of the glass element is loaded with a tungsten carbide ball having a diameter of 1.5 mm.
    Type: Application
    Filed: October 5, 2020
    Publication date: February 4, 2021
    Inventors: THERESA CHANG, Polly Wanda Chu, Patrick Joseph Cimo, Adam James Ellison, Timothy Michael Gross, Guangli Hu, Nicholas James Smith, Butchi Reddy Vaddi, Natesan Venkataraman
  • Patent number: 10824200
    Abstract: A glass element having a thickness from 25 ?m to 125 ?m, a first primary surface, a second primary surface, and a compressive stress region extending from the first primary surface to a first depth, the region defined by a compressive stress ?I of at least about 100 MPa at the first primary surface. Further, the glass element has a stress profile such that it does not fail when it is subject to 200,000 cycles of bending to a target bend radius of from 1 mm to 20 mm, by the parallel plate method. Still further, the glass element has a puncture resistance of greater than about 1.5 kgf when the first primary surface of the glass element is loaded with a tungsten carbide ball having a diameter of 1.5 mm.
    Type: Grant
    Filed: October 17, 2018
    Date of Patent: November 3, 2020
    Assignee: Corning Incorporated
    Inventors: Theresa Chang, Polly Wanda Chu, Patrick Joseph Cimo, Adam James Ellison, Timothy Michael Gross, Guangli Hu, Nicholas James Smith, Butchi Reddy Vaddi, Natesan Venkataraman
  • Patent number: 10809766
    Abstract: A glass element having a thickness from 25 ?m to 125 ?m, a first primary surface, a second primary surface, and a compressive stress region extending from the first primary surface to a first depth, the region defined by a compressive stress ?I of at least about 100 MPa at the first primary surface. Further, the glass element has a stress profile such that it does not fail when it is subject to 200,000 cycles of bending to a target bend radius of from 1 mm to 20 mm, by the parallel plate method. Still further, the glass element has a puncture resistance of greater than about 1.5 kgf when the first primary surface of the glass element is loaded with a tungsten carbide ball having a diameter of 1.5 mm.
    Type: Grant
    Filed: December 15, 2017
    Date of Patent: October 20, 2020
    Assignee: Corning Incorporated
    Inventors: Polly Wanda Chu, Adam James Ellison, Timothy Michael Gross, Robert Bumju Lee, Jen-Chieh Lin, Chouhwan Moon, Pei-Lien Tseng
  • Patent number: 10749461
    Abstract: A glass roof shingle includes a shingle cover layer made of a glass. A shingle base layer is disposed underneath the shingle cover layer. The shingle base layer and shingle cover layer define a cavity. A seal area formed between the shingle base layer and shingle cover layer and around the cavity controls ingress of moisture into the cavity. A photovoltaic module may be disposed within the cavity.
    Type: Grant
    Filed: November 19, 2019
    Date of Patent: August 18, 2020
    Assignee: CORNING INCORPORATED
    Inventors: Polly Wanda Chu, Matthew John Dejneka, Anis Fadul, Lisa Lynn Griesbach Hawkins
  • Patent number: 10688756
    Abstract: A cover element for a foldable electronic device that includes a foldable glass element, first and second primary surfaces, and a compressive stress region extending from the first primary surface to a first depth that is defined by a stress ?I of at least about 100 MPa in compression at the first primary surface. The device also includes a polymeric layer disposed over the first primary surface. The glass element has a stress profile such that when the glass element is bent to a target bend radius of from 1 mm to 20 mm, to induce a bending stress ?B at the first primary surface in tension, ?I+?B<400 MPa (in tension). Further, the cover element can withstand a pen drop height of at least 1.5 times that of a control pen drop height of the cover element without the layer according to a Drop Test 1.
    Type: Grant
    Filed: January 13, 2017
    Date of Patent: June 23, 2020
    Assignee: Corning Incorporated
    Inventors: Polly Wanda Chu, Michael Patrick Donovan, Timothy Michael Gross, Louis Mattos, Jr., Prakash Chandra Panda, Robert Lee Smith, III
  • Patent number: 10651781
    Abstract: A glass roof shingle includes a shingle cover layer made of a glass. A shingle base layer is disposed underneath the shingle cover layer. The shingle base layer and shingle cover layer define a cavity. A seal area formed between the shingle base layer and shingle cover layer and around the cavity controls ingress of moisture into the cavity. A photovoltaic module may be disposed within the cavity.
    Type: Grant
    Filed: August 24, 2018
    Date of Patent: May 12, 2020
    Assignee: CORNING INCORPORATED
    Inventors: Polly Wanda Chu, Matthew John Dejneka, Anis Fadul, Lisa Lynn Griesbach Hawkins
  • Publication number: 20200091858
    Abstract: A glass roof shingle includes a shingle cover layer made of a glass. A shingle base layer is disposed underneath the shingle cover layer. The shingle base layer and shingle cover layer define a cavity. A seal area formed between the shingle base layer and shingle cover layer and around the cavity controls ingress of moisture into the cavity. A photovoltaic module may be disposed within the cavity.
    Type: Application
    Filed: November 19, 2019
    Publication date: March 19, 2020
    Inventors: Polly Wanda Chu, Matthew John Dejneka, Anis Fadul, Lisa Lynn Griesbach Hawkins
  • Publication number: 20190315099
    Abstract: A glass article having a first glass layer, a second glass layer disposed adjacent to the first glass layer, and an interface slidably coupling the first glass layer to the second glass layer. The interface has a thickness of from 2 nm to 500 nm. The glass article is characterized by: (a) an absence of failure when the article is held at a parallel plate separation distance of 10 mm for 60 minutes at 25° C. and 50% relative humidity; (b) a puncture resistance of greater than about 6 kgf when the second glass layer is supported by (i) a 50 ?m thick pressure-sensitive adhesive having an elastic modulus of less than 1 GPa and (ii) an approximately 100 ?m thick polyethylene terephthalate layer having an elastic modulus of less than 10 GPa, and the first glass layer is loaded with a tungsten carbide ball having a 1 mm diameter.
    Type: Application
    Filed: October 27, 2017
    Publication date: October 17, 2019
    Applicant: Corning Incorporated
    Inventors: Shinu Baby, Dana Craig Bookbinder, Polly Wanda Chu, Timothy Michael Gross, Yousef Kayed Qaroush
  • Publication number: 20190275767
    Abstract: A stack assembly including a glass element having a thickness of less than or equal to 200 microns, and a first layer supporting the glass element. The glass element having a first pen drop height value when directly adjacent on a solid aluminum stage. The first layer having a stiffness of from 9×105 N/m to 2.0×106 N/m. When the glass element is supported by the first layer on the aluminum stage, the glass element comprises a second pen drop height value, wherein the second pen drop height value is greater than the first pen drop height value.
    Type: Application
    Filed: October 24, 2017
    Publication date: September 12, 2019
    Applicant: CORNING INCORPORATED
    Inventors: Polly Wanda Chu, Timothy Michael Gross, Louis Mattos, JR., Timothy Paul Smith
  • Publication number: 20190068109
    Abstract: A glass roof shingle includes a shingle cover layer made of a glass. A shingle base layer is disposed underneath the shingle cover layer. The shingle base layer and shingle cover layer define a cavity. A seal area formed between the shingle base layer and shingle cover layer and around the cavity controls ingress of moisture into the cavity. A photovoltaic module may be disposed within the cavity.
    Type: Application
    Filed: August 24, 2018
    Publication date: February 28, 2019
    Inventors: Polly Wanda Chu, Matthew John Dejneka, Anis Fadul, Lisa Lynn Griesbach Hawkins
  • Publication number: 20190050027
    Abstract: A glass element having a thickness from 25 ?m to 125 ?m, a first primary surface, a second primary surface, and a compressive stress region extending from the first primary surface to a first depth, the region defined by a compressive stress ?I of at least about 100 MPa at the first primary surface. Further, the glass element has a stress profile such that it does not fail when it is subject to 200,000 cycles of bending to a target bend radius of from 1 mm to 20 mm, by the parallel plate method. Still further, the glass element has a puncture resistance of greater than about 1.5 kgf when the first primary surface of the glass element is loaded with a tungsten carbide ball having a diameter of 1.5 mm.
    Type: Application
    Filed: October 17, 2018
    Publication date: February 14, 2019
    Inventors: Theresa Chang, Polly Wanda Chu, Patrick Joseph Cimo, Adam James Ellison, Timothy Michael Gross, Guangli Hu, Nicholas James Smith, Butchi Reddy Vaddi, Natesan Venkataraman
  • Publication number: 20190022980
    Abstract: A cover element for a foldable electronic device that includes a foldable glass element, first and second primary surfaces, and a compressive stress region extending from the first primary surface to a first depth that is defined by a stress ?I of at least about 100 MPa in compression at the first primary surface. The device also includes a polymeric layer disposed over the first primary surface. The glass element has a stress profile such that when the glass element is bent to a target bend radius of from 1 mm to 20 mm, to induce a bending stress ?B at the first primary surface in tension, ?I+?B<400 MPa (in tension). Further, the cover element can withstand a pen drop height of at least 1.5 times that of a control pen drop height of the cover element without the layer according to a Drop Test 1.
    Type: Application
    Filed: January 13, 2017
    Publication date: January 24, 2019
    Inventors: Polly Wanda Chu, Michael Patrick Donovan, Timothy Michael Gross, Louis Mattos, JR., Prakash Chandra Panda, Robert Lee Smith, III
  • Publication number: 20190011954
    Abstract: A cover element for a foldable electronic device that includes a foldable glass element, first and second primary surfaces, and a compressive stress region extending from the first primary surface to a first depth that is defined by a stress ?I of at least about 100 MPa in compression at the first primary surface. The device also includes a polymeric layer disposed over the first primary surface. The glass element has a stress profile such that when the glass element is bent to a target bend radius of from 1 mm to 20 mm, to induce a bending stress ?B at the first primary surface in tension, ?I+?B<400 MPa (in tension). Further, the cover element can withstand a pen drop height of at least 1.5 times that of a control pen drop height of the cover element without the layer according to a Drop Test 1.
    Type: Application
    Filed: August 31, 2018
    Publication date: January 10, 2019
    Inventors: Polly Wanda Chu, Michael Patrick Donovan, Timothy Michael Gross, Louis Mattos, JR., Prakash Chandra Panda, Robert Lee Smith, III