Patents by Inventor Pooran C. Joshi

Pooran C. Joshi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230288362
    Abstract: A low-cost and low-power polyaniline-based (PANI) gas sensor is provided. The PANI-based gas sensor is formed on a flexible polyimide (PI) substrate using additive manufacturing techniques. The gas sensor can include silver interdigitated electrode (IDE) arrays and conducting polymeric sensing films (i.e., PANI) that are printed onto the PI substrate using a direct-write technology of aerosol-jet printing. Aerosol-jet printing enables high-resolution, non-contact deposition of both the electrode and chemically sensitive materials. The gas sensor is optionally capable of 5 ppm sensitivity and a sub-ppm detection limit.
    Type: Application
    Filed: March 8, 2023
    Publication date: September 14, 2023
    Inventors: Tolga Aytug, Christine Fisher, Pooran C. Joshi, Robert J. Warmack
  • Patent number: 11199517
    Abstract: A structural health monitoring method is provided that utilizes self-sensing printed polymer structures. The method is based on resistivity properties of conductive materials, which can be integrated to a 3D printed polymer structure during additive manufacturing. An article to be monitored has at least one 3D printed polymer structure including a circuit comprising at least one conductive pathway extending through a non-conductive material. The resistance across the circuit is measured during or after loading of the article to determine a resistance value. The measured resistance value is compared to a known resistance value, and based on the comparison, a defect can be detected in the 3D printed polymer structure. Structural health monitoring systems and articles with integrated structural health monitoring are also provided.
    Type: Grant
    Filed: August 13, 2019
    Date of Patent: December 14, 2021
    Assignee: UT-Battelle, LLC
    Inventors: Vlastimil Kunc, Ahmed A. Hassen, Pooran C. Joshi, Seokpum Kim, John M. Lindahl, Chad E. Duty, Jordan A. Failla, Tyler C. H. Smith
  • Patent number: 10932360
    Abstract: A system and method (referred to as a method) to fabricate sensors and electronic circuits. The method prints a first thin-film having an electronic conductivity of about less than a millionth of a Siemens per meter and a permalloy directly onto the first thin-film. The permalloy has a magnetic permeability greater than a predetermined level and has a thickness within a range of about 1 to 20 microns. The system prints a second thin-film directly onto the permalloy to encapsulate the permalloy onto the first thin-film and prints conductive traces directly onto the surfaces of the first-thin-film, the permalloy, and the second thin-film. In some applications, a sensor is packaged in an additively manufactured three-dimensional cylindrical shape that can be mounted on or is a unitary part of a current carrying conductor without incising, sharing, or severing (e.g., cutting) the current carrying conductor or its insulation.
    Type: Grant
    Filed: July 17, 2019
    Date of Patent: February 23, 2021
    Assignee: UT-BATTELLE, LLC
    Inventors: Pooran C. Joshi, Stephen M. Killough, Phani Teja V. Kuruganti
  • Publication number: 20200049648
    Abstract: A structural health monitoring method is provided that utilizes self-sensing printed polymer structures. The method is based on resistivity properties of conductive materials, which can be integrated to a 3D printed polymer structure during additive manufacturing. An article to be monitored has at least one 3D printed polymer structure including a circuit comprising at least one conductive pathway extending through a non-conductive material. The resistance across the circuit is measured during or after loading of the article to determine a resistance value. The measured resistance value is compared to a known resistance value, and based on the comparison, a defect can be detected in the 3D printed polymer structure. Structural health monitoring systems and articles with integrated structural health monitoring are also provided.
    Type: Application
    Filed: August 13, 2019
    Publication date: February 13, 2020
    Inventors: Vlastimil Kunc, Ahmed A. Hassen, Pooran C. Joshi, Seokpum Kim, John M. Lindahl, Chad E. Duty, Jordan A. Failla, Tyler C. H. Smith
  • Publication number: 20200029427
    Abstract: A system and method (referred to as a method) to fabricate sensors and electronic circuits. The method prints a first thin-film having an electronic conductivity of about less than a millionth of a Siemens per meter and a permalloy directly onto the first thin-film. The permalloy has a magnetic permeability greater than a predetermined level and has a thickness within a range of about 1 to 20 microns. The system prints a second thin-film directly onto the permalloy to encapsulate the permalloy onto the first thin-film and prints conductive traces directly onto the surfaces of the first-thin-film, the permalloy, and the second thin-film. In some applications, a sensor is packaged in an additively manufactured three-dimensional cylindrical shape that can be mounted on or is a unitary part of a current carrying conductor without incising, sharing, or severing (e.g., cutting) the current carrying conductor or its insulation.
    Type: Application
    Filed: July 17, 2019
    Publication date: January 23, 2020
    Inventors: Pooran C. Joshi, Stephen M. Killough, Phani Teja V. Kuruganti
  • Patent number: 10337030
    Abstract: A method for producing metal chalcogenide nanoparticles, the method comprising: (i) producing hydrogen chalcogenide-containing vapor from a microbial source, wherein said microbial source comprises: (a) chalcogen-reducing microbes capable of producing hydrogen chalcogenide vapor from a chalcogen-containing source; (b) a culture medium suitable for sustaining said chalcogen-reducing microbes; (c) at least one chalcogen-containing compound that can be converted to hydrogen chalcogenide vapor by said chalcogen-reducing microbes; and (d) at least one nutritive compound that provides donatable electrons to said chalcogen-reducing microbes during consumption of the nutritive compound by said chalcogen-reducing microbes; and (ii) directing said hydrogen chalcogenide-containing vapor into a metal-containing solution comprising a metal salt dissolved in a solvent to produce metal chalcogenide nanoparticles in said solution, wherein said chalcogen is sulfur or selenium, and said chalcogenide is sulfide or selenide, res
    Type: Grant
    Filed: July 7, 2017
    Date of Patent: July 2, 2019
    Assignees: UT-Battelle, LLC, U.S. Geological Survey
    Inventors: Ji Won Moon, Tommy Joe Phelps, Ronald Oremland, David E. Graham, Ilia N. Ivanov, Christopher B. Jacobs, Gyoung Gug Jang, Michelle K. Kidder, Pooran C. Joshi, Beth L. Armstrong
  • Publication number: 20180010153
    Abstract: A method for producing metal chalcogenide nanoparticles, the method comprising: (i) producing hydrogen chalcogenide-containing vapor from a microbial source, wherein said microbial source comprises: (a) chalcogen-reducing microbes capable of producing hydrogen chalcogenide vapor from a chalcogen-containing source; (b) a culture medium suitable for sustaining said chalcogen-reducing microbes; (c) at least one chalcogen-containing compound that can be converted to hydrogen chalcogenide vapor by said chalcogen-reducing microbes; and (d) at least one nutritive compound that provides donatable electrons to said chalcogen-reducing microbes during consumption of the nutritive compound by said chalcogen-reducing microbes; and (ii) directing said hydrogen chalcogenide-containing vapor into a metal-containing solution comprising a metal salt dissolved in a solvent to produce metal chalcogenide nanoparticles in said solution, wherein said chalcogen is sulfur or selenium, and said chalcogenide is sulfide or selenide, res
    Type: Application
    Filed: July 7, 2017
    Publication date: January 11, 2018
    Inventors: Ji Won MOON, Tommy Joe PHELPS, Ronald OREMLAND, David E. GRAHAM, Ilia N. IVANOV, Christopher B. JACOBS, Gyoung Gug JANG, Michelle K. KIDDER, Pooran C. JOSHI, Beth L. ARMSTRONG
  • Patent number: 9729193
    Abstract: A wireless sensor platform and methods of manufacture are provided. The platform involves providing a plurality of wireless sensors, where each of the sensors is fabricated on flexible substrates using printing techniques and low temperature curing. Each of the sensors can include planar sensor elements and planar antennas defined using the printing and curing. Further, each of the sensors can include a communications system configured to encode the data from the sensors into a spread spectrum code sequence that is transmitted to a central computer(s) for use in monitoring an area associated with the sensors.
    Type: Grant
    Filed: November 11, 2014
    Date of Patent: August 8, 2017
    Assignee: UT-Battelle, LLC
    Inventors: Pooran C. Joshi, Stephen M. Killough, Phani Teja Kuruganti
  • Publication number: 20160134327
    Abstract: A wireless sensor platform and methods of manufacture are provided. The platform involves providing a plurality of wireless sensors, where each of the sensors is fabricated on flexible substrates using printing techniques and low temperature curing. Each of the sensors can include planar sensor elements and planar antennas defined using the printing and curing. Further, each of the sensors can include a communications system configured to encode the data from the sensors into a spread spectrum code sequence that is transmitted to a central computer(s) for use in monitoring an area associated with the sensors.
    Type: Application
    Filed: November 11, 2014
    Publication date: May 12, 2016
    Inventors: Pooran C. JOSHI, Stephen M. KILLOUGH, Phani Teja KURUGANTI
  • Patent number: 9059079
    Abstract: A method is disclosed for processing an insulator material or a semiconductor material. The method includes pulsing a plasma lamp onto the material to diffuse a doping substance into the material, to activate the doping substance in the material or to metallize a large area region of the material. The method may further include pulsing a laser onto a selected region of the material to diffuse a doping substance into the material, to activate the doping substance in the material or to metallize a selected region of the material.
    Type: Grant
    Filed: September 25, 2013
    Date of Patent: June 16, 2015
    Assignees: UT-Battelle, LLC, APPLICOTE, LLC
    Inventors: Nathaniel R Quick, Pooran C Joshi, Chad Edward Duty, Gerald Earle Jellison, Jr., Joseph Attilio Angelini
  • Patent number: 7163882
    Abstract: A composite Pt/Ti/WSi/Ni Ohmic contact has been fabricated by a physical deposition process which uses electron beam evaporation and dc-sputter deposition. The Ni based composite Ohmic contact on n-Sic is rapid thermally annealed (RTA) at 950° C. to 1000° C. for 30 s to provide excellent current-voltage characteristics, an abrupt, void free contact-SiC interface, retention of the as-deposited contact layer width, smooth surface morphology and an absence of residual carbon within the contact layer and/or at the Ohmic contact-SiC interface. The annealed produced Ni2Si interfacial phase is responsible for the superior electrical integrity of the Ohmic contact to n-SiC. The effects of contact delamination due to stress associated with interfacial voiding has been eliminated. Wire bonding failure, non-uniform current flow and SiC polytype alteration due to extreme surface roughness have also been abolished.
    Type: Grant
    Filed: July 6, 2004
    Date of Patent: January 16, 2007
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Melanie W. Cole, Pooran C. Joshi
  • Patent number: 6919283
    Abstract: This invention is directed to pure and modified Ta2O5 thin films deposited on suitable substrate and methods for making these Ta2O5 thin films. These Ta2O5 thin films exhibit superior properties for microwave communication, dynamic random access memory and integrated electronic applications. The Ta2O5 thin films perform well in these types of technologies due to the Ta 2O5 thin film component which allows for high dielectric constants, low dielectric loss, and good temperature and frequency stability, thus making them particularly useful in high frequency microwave applications.
    Type: Grant
    Filed: September 15, 2003
    Date of Patent: July 19, 2005
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventor: Pooran C. Joshi
  • Publication number: 20040209485
    Abstract: This invention is directed to pure and modified Ta2O5 thin films deposited on suitable substrates and methods for making these Ta2O5 thin films. These Ta2O5 thin films exhibit superior properties for microwave communication, dynamic random access memory and integrated electronic applications. The Ta2O5 thin films perform well in these types of technologies due to the Ta2O5 thin film component which allows for high dielectric constants, low dielectric loss, and good temperature and frequency stability, thus making them particularly useful in high frequency microwave applications.
    Type: Application
    Filed: September 15, 2003
    Publication date: October 21, 2004
    Inventor: Pooran C. Joshi
  • Patent number: 6759683
    Abstract: A composite Pt/Ti/WSi/Ni Ohmic contact has been fabricated by a physical deposition process which uses electron beam evaporation and dc-sputter deposition. The Ni based composite Ohmic contact on n-SiC is rapid thermally annealed (RTA) at 950° C. to 1000° C. for 30s to provide excellent current-voltage characteristics, an abrupt, void free contact-SiC interface, retention of the as-deposited contact layer width, smooth surface morphology and an absence of residual carbon within the contact layer and/or at the Ohmic contact-SiC interface. The annealed produced Ni2Si interfacial phase is responsible for the superior electrical integrity of the Ohmic contact to n-SiC. The effects of contact delamination due to stress associated with interfacial voiding has been eliminated. Wire bonding failure, non-uniform current flow and SiC polytype alteration due to extreme surface roughness have also been abolished.
    Type: Grant
    Filed: August 27, 2001
    Date of Patent: July 6, 2004
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Melanie W. Cole, Pooran C. Joshi
  • Publication number: 20020031671
    Abstract: This invention is directed to pure and modified Ta2O5 thin films deposited on suitable substrates and methods for making these Ta2O5 thin films. These Ta2O5 thin films exhibit superior properties for microwave communication, dynamic random access memory and integrated electronic applications. The Ta2O5 thin films perform well in these types of technologies due to the Ta2O5 thin film component which allows for high dielectric constants, low dielectric loss, and good temperature and frequency stability, thus making them particularly useful in high frequency microwave applications.
    Type: Application
    Filed: May 16, 2001
    Publication date: March 14, 2002
    Inventors: Pooran C. Joshi, Melanie W. Cole, Eric Ngo
  • Patent number: 6071555
    Abstract: Thin films of ferroelectric composite material comprising barium strontium titanate (BSTO) combined with magnesium oxide additive are produced by metalorganic decomposition. The barium strontium titanate magnesium oxide ferroelectric composite comprises Ba.sub.1-x Sr.sub.x TiO.sub.3 /MgO, wherein x is greater than 0.0 but less than or equal to 0.75 and preferably is 0.4, and wherein the weight ratio of BSTO to magnesium oxide may range from 99 to 40 weight percent BSTO to 1 to 60 weight percent magnesium oxide. These films have desirable electronic properties and may have application to both active microwave and dynamic random access memory devices, including low dielectric constant, low loss factor, high tunability, and high resistivity. The films produced are uniformly thick and impurity free, with thicknesses of only 0.4 microns.
    Type: Grant
    Filed: November 5, 1998
    Date of Patent: June 6, 2000
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Somnath Sengupta, Steven Stowell, Louise Sengupta, Pooran C. Joshi, Sasangan Ramanathan, Seshu B. Desu