Patents by Inventor Porshia Shane Wrschka

Porshia Shane Wrschka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7129564
    Abstract: The structure and method of forming a notched gate MOSFET disclosed herein addresses such problems as device reliability. A gate dielectric (e.g. gate oxide) is formed on the surface of an active area on the semiconductor substrate, preferably defined by an isolation trench region. A layer of polysilicon is then deposited on the gate dielectric. This step is followed by depositing a layer of silicon germanium) (SiGe). The sidewalls of the polysilicon layer are then laterally etched, selective to the SiGe layer to create a notched gate conductor structure, with the SiGe layer being broader than the underlying polysilicon layer. Sidewall spacers are preferably formed on sidewalls of the SiGe layer and the polysilicon layer. A silicide layer is preferably formed as a self-aligned silicide from a polysilicon layer deposited over the SiGe layer, to reduce resistance of the gate conductor. One or more other processing steps (e.g.
    Type: Grant
    Filed: February 17, 2005
    Date of Patent: October 31, 2006
    Assignee: International Business Machines Corporation
    Inventors: Jochen Beintner, Yujun Li, Naim Moumen, Porshia Shane Wrschka
  • Patent number: 7101768
    Abstract: As disclosed herein, a method is provided, in an integrated circuit, for forming an enhanced capacitance trench capacitor. The method includes forming a trench in a semiconductor substrate and forming an isolation collar on a sidewall of the trench. The collar has at least an exposed layer of oxide and occupies only a “collar” portion of the sidewall, while a “capacitor” portion of the sidewall is free of the collar. A seeding layer is then selectively deposited on the capacitor portion of the sidewall. Then, hemispherical silicon grains are deposited on the seeding layer on the capacitor portion of the sidewall. A dielectric material is deposited, and then a conductor material, in that order, over the hemispherical silicon grains on the capacitor portion of the sidewall.
    Type: Grant
    Filed: September 27, 2002
    Date of Patent: September 5, 2006
    Assignee: International Business Machines Corporation
    Inventors: Kenneth T. Settlemyer, Jr., Porshia Shane Wrschka
  • Patent number: 6905944
    Abstract: A method for fabricating a deep trench etched into a semiconductor substrate is provided by the present invention. The trench is divided into an upper portion and a lower portion and the method allows for the lower portion to be processed differently from the upper portion. After the trench is etched into the semiconductor substrate, a nitride layer is formed over a sidewall of the trench. A layer of oxide is then formed over the nitride layer. A filler material is then deposited and recessed to cover the oxide layer in the lower portion of the trench, followed by the removal of the oxide layer from the upper portion of the trench above the filler material. Once the oxide layer is removed from the upper portion of the trench, the filler material can also be removed, while allowing the oxide layer and the nitride layer to remain in the lower portion of the trench. Silicon is selectively deposited on the exposed nitride layer in the upper portion of the trench.
    Type: Grant
    Filed: May 8, 2003
    Date of Patent: June 14, 2005
    Assignees: International Business Machines Corporation, Infineon Technologies AG
    Inventors: Michael Patrick Chudzik, Irene McStay, Helmut Horst Tews, Porshia Shane Wrschka
  • Patent number: 6905976
    Abstract: The structure and method of forming a notched gate MOSFET disclosed herein addresses such problems as device reliability. A gate dielectric (e.g. gate oxide) is formed on the surface of an active area on the semiconductor substrate, preferably defined by an isolation trench region. A layer of polysilicon is then deposited on the gate dielectric. This step is followed by depositing a layer of silicon germanium) (SiGe). The sidewalls of the polysilicon layer are then laterally etched, selective to the SiGe layer to create a notched gate conductor structure, with the SiGe layer being broader than the underlying polysilicon layer. Sidewall spacers are preferably formed on sidewalls of the SiGe layer and the polysilicon layer. A silicide layer is preferably formed as a self-aligned silicide from a polysilicon layer deposited over the SiGe layer, to reduce resistance of the gate conductor. One or more other processing steps (e.g.
    Type: Grant
    Filed: May 6, 2003
    Date of Patent: June 14, 2005
    Assignee: International Business Machines Corporation
    Inventors: Jochen Beintner, Yujun Li, Naim Moumen, Porshia Shane Wrschka
  • Publication number: 20040222498
    Abstract: The structure and method of forming a notched gate MOSFET disclosed herein addresses such problems as device reliability. A gate dielectric (e.g. gate oxide) is formed on the surface of an active area on the semiconductor substrate, preferably defined by an isolation trench region. A layer of polysilicon is then deposited on the gate dielectric. This step is followed by depositing a layer of silicon germanium) (SiGe). The sidewalls of the polysilicon layer are then laterally etched, selective to the SiGe layer to create a notched gate conductor structure, with the SiGe layer being broader than the underlying polysilicon layer. Sidewall spacers are preferably formed on sidewalls of the SiGe layer and the polysilicon layer. A silicide layer is preferably formed as a self-aligned silicide from a polysilicon layer deposited over the SiGe layer, to reduce resistance of the gate conductor. One or more other processing steps (e.g.
    Type: Application
    Filed: May 6, 2003
    Publication date: November 11, 2004
    Applicants: International Business Machines Corporation, Infineon Technologies North America Corp.
    Inventors: Jochen Beintner, Yujun Li, Naim Moumen, Porshia Shane Wrschka
  • Publication number: 20040224478
    Abstract: A method for fabricating a deep trench etched into a semiconductor substrate is provided by the present invention. The trench is divided into an upper portion and a lower portion and the method allows for the lower portion to be processed differently from the upper portion. After the trench is etched into the semiconductor substrate, a nitride layer is formed over a sidewall of the trench. A layer of oxide is then formed over the nitride layer. A filler material is then deposited and recessed to cover the oxide layer in the lower portion of the trench, followed by the removal of the oxide layer from the upper portion of the trench above the filler material. Once the oxide layer is removed from the upper portion of the trench, the filler material can also be removed, while allowing the oxide layer and the nitride layer to remain in the lower portion of the trench. Silicon is selectively deposited on the exposed nitride layer in the upper portion of the trench.
    Type: Application
    Filed: May 8, 2003
    Publication date: November 11, 2004
    Applicants: International Business Machines Corporation, Infineon Technologies North America Corp
    Inventors: Michael Patrick Chudzik, Irene McStay, Helmut Horst Tews, Porshia Shane Wrschka
  • Publication number: 20040063297
    Abstract: As disclosed herein, a method is provided, in an integrated circuit, for forming an enhanced capacitance trench capacitor. The method includes forming a trench in a semiconductor substrate and forming an isolation collar on a sidewall of the trench. The collar has at least an exposed layer of oxide and occupies only a “collar” portion of the sidewall, while a “capacitor” portion of the sidewall is free of the collar. A seeding layer is then selectively deposited on the capacitor portion of the sidewall. Then, hemispherical silicon grains are deposited on the seeding layer on the capacitor portion of the sidewall. A dielectric material is deposited, and then a conductor material, in that order, over the hemispherical silicon grains on the capacitor portion of the sidewall.
    Type: Application
    Filed: September 27, 2002
    Publication date: April 1, 2004
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kenneth T. Settlemyer,, Porshia Shane Wrschka