Patents by Inventor Porter Shannon

Porter Shannon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20070129496
    Abstract: Multimodal polyethylenes possessing a density from 0.940 to 0.965 g/cm3, and an I21 from 4 to 20 dg/min, and comprising a low molecular weight ethylene copolymer having a weight average molecular weight from 5,000 amu to 50,000 amu; and a high molecular weight ethylene copolymer having a weight average molecular weight from 60,000 amu to 800,000 amu, both components having a desirable balance of short chain branching making the multimodal polyethylene suitable for films, pipes, rotomolding applications and blow molding applications.
    Type: Application
    Filed: December 7, 2005
    Publication date: June 7, 2007
    Inventors: Porter Shannon, Fred Ehrman
  • Publication number: 20070049711
    Abstract: A catalyst composition that includes a support material having an improved particle-size distribution is provided. Processes for producing polyolefin composition also are provided. Polymers and films also are provided. An example of a catalyst composition is a supported multi-transition-metal catalyst composition that includes: (a) at least two catalyst components selected from the group consisting of: a nonmetallocene catalyst component and a metallocene catalyst component; (b) a support material that has a D50 of less than about 30 microns and a particle size distribution having a D90/D10 ratio of less than about 6; and (c) an activator.
    Type: Application
    Filed: September 1, 2005
    Publication date: March 1, 2007
    Inventors: Chi-I Kuo, Tae Kwalk, Dongming Li, Porter Shannon
  • Publication number: 20060038315
    Abstract: Methods of tailoring polyethylenes are contemplated utilizing 0.5 to 7.95 volume percent oxygen containing gases. The tailoring occurs in a melt-conveying zone of a mixer/extruder, and not in the feed or melting zones of a mixer/extruder. The effect of tailoring is to increase elasticity (G?/G?) of the polyethylenes more than 10 percent over similar polyethylenes that are extruded/mixed in the substantial absence of oxygen of oxygen containing gases.
    Type: Application
    Filed: July 19, 2005
    Publication date: February 23, 2006
    Inventors: Herbert Tunnell, Porter Shannon, Pradeep Shirodkar, Dongming Li, Thomas Veariel
  • Patent number: 6943134
    Abstract: A process of producing a bimodal polyolefin composition is described, which includes in one embodiment contacting monomers with a supported bimetallic catalyst composition for a time sufficient to form a bimodal polyolefin composition that includes a high molecular weight polyolefin component and a low molecular weight polyolefin component; wherein the supported bimetallic catalyst includes a first catalyst component that is preferably non-metallocene, and a second catalyst component that includes a metallocene catalyst compound having at least one fluoride or fluorine containing leaving group, wherein the bimetallic catalyst is supported by an enhanced silica, dehydrated at a temperature of 800° C. or more in one embodiment.
    Type: Grant
    Filed: September 20, 2004
    Date of Patent: September 13, 2005
    Assignee: Univation Technologies, LLC
    Inventors: Chi-I Kuo, G. McCullough Laughlin, Pradeep Pandurang Shirodkar, Fred David Ehrman, Porter Shannon, Robert Lynn Santana, Steven K. Ackerman, Daniel Gerard O'Neil
  • Publication number: 20050153148
    Abstract: A film comprising a polyethylene composition, the polyethylene composition in one embodiment comprising a high molecular weight component having a weight average molecular weight of greater than 50,000 amu and a low molecular weight component having a weight average molecular weight of less than 50,000 amu; the polyethylene composition possessing a density of between 0.940 and 0.970 g/cm3, and an I21 value of less than 20 dg/min; characterized in that the polyethylene composition extrudes at an advantageously high specific throughput at an advantageously low melt temperature, and wherein the film has a gel count of less than 100.
    Type: Application
    Filed: December 9, 2004
    Publication date: July 14, 2005
    Inventors: Porter Shannon, Rakesh Kumar, Pradeep Shirodkar, Fred Ehrman, Mark Davis, Keith Trapp, Dongming Li
  • Publication number: 20050154168
    Abstract: A film comprising a polyethylene composition, the polyethylene composition in one embodiment comprising a high molecular weight component having a weight average molecular weight of greater than 50,000 amu and a low molecular weight component having a weight average molecular weight of less than 50,000 amu; the polyethylene composition possessing a density of between 0.940 and 0.970 g/cm3, and an I21 value of less than 20 dg/min; characterized in that the polyethylene composition extrudes at an advantageously high specific throughput at an advantageously low melt temperature, and wherein the film has a gel count of less than 100.
    Type: Application
    Filed: December 9, 2004
    Publication date: July 14, 2005
    Inventors: Porter Shannon, Rakesh Kumar, Pradeep Shirodkar, Fred Ehrman, Mark Davis, Keith Trapp, Dongming Li
  • Publication number: 20050085600
    Abstract: Methods of controlling the flow index and/or molecular weight split of a polymer composition are disclosed. The method of producing a polymer composition in one embodiment comprises incorporating a high molecular weight polymer into a low molecular weight polymer to form the polymer composition in a single polymerization reactor in the presence of polymerizable monomers, a bimetallic catalyst composition and at least one control agent; wherein the control agent is added in an amount sufficient to control the level of incorporation of the high molecular weight polymer, the level of low molecular weight polymer, or both. Examples of control agents include alcohols, ethers, amines and oxygen.
    Type: Application
    Filed: October 15, 2003
    Publication date: April 21, 2005
    Inventors: Fred Ehrman, Pradeep Shirodkar, Mark Davis, Daniel Zilker, Porter Shannon
  • Patent number: 6875828
    Abstract: A process of producing a bimodal polyolefin composition is described, which includes in one embodiment contacting monomers with a supported bimetallic catalyst composition for a time sufficient to form a bimodal polyolefin composition that includes a high molecular weight polyolefin component and a low molecular weight polyolefin component; wherein the supported bimetallic catalyst includes a first catalyst component that is preferably non-metallocene, and a second catalyst component that includes a metallocene catalyst compound having at least one fluoride or fluorine containing leaving group, wherein the bimetallic catalyst is supported by an enhanced silica, dehydrated at a temperature of 800° C. or more in one embodiment.
    Type: Grant
    Filed: February 18, 2003
    Date of Patent: April 5, 2005
    Assignee: Univation Technologies, LLC
    Inventors: Chi-I Kuo, G. McCullough Laughlin, Pradeep Pandurang Shirodkar, Fred David Ehrman, Porter Shannon, Robert Lynn Santana, Steven K. Ackerman, Daniel Gerard O'Neil
  • Publication number: 20050054799
    Abstract: A process of producing a bimodal polyolefin composition is described, which includes in one embodiment contacting monomers with a supported bimetallic catalyst composition for a time sufficient to form a bimodal polyolefin composition that includes a high molecular weight polyolefin component and a low molecular weight polyolefin component; wherein the supported bimetallic catalyst includes a first catalyst component that is preferably non-metallocene, and a second catalyst component that includes a metallocene catalyst compound having at least one fluoride or fluorine containing leaving group, wherein the bimetallic catalyst is supported by an enhanced silica, dehydrated at a temperature of 800° C. or more in one embodiment.
    Type: Application
    Filed: September 20, 2004
    Publication date: March 10, 2005
    Inventors: Chi-I Kuo, Laughlin McCullough, Pradeep Shirodkar, Fred Ehrman, Porter Shannon, Robert Santana, Steven Ackerman, Daniel O'Neil
  • Publication number: 20050038210
    Abstract: A process of producing a bimodal polyolefin composition is described, which includes in one embodiment contacting monomers with a supported bimetallic catalyst composition for a time sufficient to form a bimodal polyolefin composition that includes a high molecular weight polyolefin component and a low molecular weight polyolefin component; wherein the supported bimetallic catalyst includes a first catalyst component that is preferably non-metallocene, and a second catalyst component that includes a metallocene catalyst compound having at least one fluoride or fluorine containing leaving group, wherein the bimetallic catalyst is supported by an enhanced silica, dehydrated at a temperature of 800° C. or more in one embodiment.
    Type: Application
    Filed: September 20, 2004
    Publication date: February 17, 2005
    Inventors: Chi-I Kuo, Laughlin McCullough, Pradeep Shirodkar, Fred Ehrman, Porter Shannon, Robert Santana, Steven Ackerman, Daniel O'Neil
  • Publication number: 20050012235
    Abstract: A process is provided for extruding a bimodal polyethylene resin. The process includes providing a polyethylene homopolymer or copolymer resin having a bimodal molecular weight distribution; conveying the resin through an extruder having a feed zone in which the resin is not melted, a melt-mixing zone in which at least a portion of the resin is melted, and a melt zone in which the resin is in a molten state, each zone being partially filled with the resin; and contacting the molten resin in the melt zone with a gas mixture of 8 to 40% by volume O2. The resin can be further pelletized. The oxygen-tailored resin can be used to make polyethylene films having improved bubble stability.
    Type: Application
    Filed: October 9, 2002
    Publication date: January 20, 2005
    Inventors: Sandra Schregenberger, James Lottes, Pradeep Shirodkar, Porter Shannon