Patents by Inventor Poul Kristensen

Poul Kristensen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8326106
    Abstract: An optical fiber that is relatively insensitive to bend loss comprises a core region and a cladding region configured to support and guide the propagation of light in a fundamental transverse mode, the cladding region including (i) an outer cladding region having a refractive index less than that of the core region, (ii) an annular cladding pedestal region having a refractive index higher than that of the outer cladding region and comparable to that of the core region, and (iii) an annular cladding inner trench region disposed between the core region and the pedestal region, the inner trench region having a refractive index less than that of the outer cladding region. In one embodiment, the fiber also includes a (iv) an annular cladding outer trench region disposed between the pedestal region and the outer cladding region, the outer trench region having a refractive index less than that of the outer cladding region.
    Type: Grant
    Filed: January 12, 2011
    Date of Patent: December 4, 2012
    Assignee: OFS Fltel, LLC
    Inventors: John Michael Fini, Poul Kristensen
  • Patent number: 8320726
    Abstract: Described are multi-tube fabrication techniques for making an optical fiber that is relatively insensitive to bend loss and alleviates the problem of catastrophic bend loss comprises a core region and a cladding region configured to support and guide the propagation of light in a fundamental transverse mode. The cladding region includes (i) an outer cladding region, (ii) an annular pedestal (or ring) region, (iii) an annular inner trench region, and (iv) an annular outer trench region. The pedestal region and the outer cladding region each have a refractive index relatively close to that of the outer cladding region. In order to suppress HOMs the pedestal region is configured to resonantly couple at least one (unwanted) transverse mode of the core region (other than the fundamental mode) to at least one transverse mode of the pedestal region.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: November 27, 2012
    Assignee: OFS Fitel, LLC
    Inventors: Peter Ingo Borel, David John DiGiovanni, John Michael Fini, Poul Kristensen
  • Publication number: 20120159995
    Abstract: An optical fiber that is relatively insensitive to bend loss and alleviates the problem of catastrophic bend loss comprises a core region and a cladding region configured to support and guide the propagation of light in a fundamental transverse mode. The cladding region includes (i) an outer cladding region, (ii) an annular pedestal (or ring) region, (iii) an annular inner trench region, and (iv) an annular outer trench region. The pedestal region and the outer cladding region each have a refractive index relatively close to that of the outer cladding region. In order to suppress HOMs the pedestal region is configured to resonantly couple at least one (unwanted) transverse mode of the core region (other than the fundamental mode) to at least one transverse mode of the pedestal region. In a preferred embodiment, the fiber is configured so that, at a signal wavelength of approximately 1550 nm, its bend loss is no more than about 0.1 dB/turn at bend radius of 5 mm and is no more than about 0.
    Type: Application
    Filed: December 15, 2011
    Publication date: June 28, 2012
    Inventors: Peter Ingo Borel, David John DiGiovanni, John Michael Fini, Poul Kristensen
  • Patent number: 8107784
    Abstract: An optical fiber that is relatively insensitive to bend loss and alleviates the problem of catastrophic bend loss comprises a core region and a cladding region configured to support and guide the propagation of light in a fundamental transverse mode. The cladding region includes (i) an outer cladding region, (ii) an annular pedestal (or ring) region, (iii) an annular inner trench region, and (iv) an annular outer trench region. The pedestal region and the outer cladding region each have a refractive index relatively close to that of the outer cladding region. In order to suppress HOMs the pedestal region is configured to resonantly couple at least one (unwanted) transverse mode of the core region (other than the fundamental mode) to at least one transverse mode of the pedestal region. In a preferred embodiment, the fiber is configured so that, at a signal wavelength of approximately 1550 nm, its bend loss is no more than about 0.1 dB/turn at bend radius of 5 mm and is no more than about 0.
    Type: Grant
    Filed: May 27, 2009
    Date of Patent: January 31, 2012
    Assignee: OFS Fitel, LLC
    Inventors: Peter Ingo Borel, David John DiGiovanni, John Michael Fini, Poul Kristensen
  • Publication number: 20110194813
    Abstract: An optical fiber that is relatively insensitive to bend loss comprises a core region and a cladding region configured to support and guide the propagation of light in a fundamental transverse mode, the cladding region including (i) an outer cladding region having a refractive index less than that of the core region, (ii) an annular cladding pedestal region having a refractive index higher than that of the outer cladding region and comparable to that of the core region, and (iii) an annular cladding inner trench region disposed between the core region and the pedestal region, the inner trench region having a refractive index less than that of the outer cladding region. In one embodiment, the fiber also includes a (iv) an annular cladding outer trench region disposed between the pedestal region and the outer cladding region, the outer trench region having a refractive index less than that of the outer cladding region.
    Type: Application
    Filed: January 12, 2011
    Publication date: August 11, 2011
    Applicant: OFS FITEL LLC
    Inventors: JOHN MICHAEL FINI, Poul Kristensen
  • Publication number: 20110194814
    Abstract: An optical fiber that is relatively insensitive to bend loss comprises a core region and a cladding region configured to support and guide the propagation of light in a fundamental transverse mode, the cladding region including (i) an outer cladding region having a refractive index less than that of the core region, (ii) an annular cladding pedestal region having a refractive index higher than that of the outer cladding region and comparable to that of the core region, and (iii) an annular cladding inner trench region disposed between the core region and the pedestal region, the inner trench region having a refractive index less than that of the outer cladding region. In one embodiment, the fiber also includes a(iv) an annular cladding outer trench region disposed between the pedestal region and the outer cladding region, the outer trench region having a refractive index less than that of the outer cladding region.
    Type: Application
    Filed: January 12, 2011
    Publication date: August 11, 2011
    Applicant: OFS FITEL LLC
    Inventors: JOHN MICHAEL FINI, Poul Kristensen
  • Patent number: 7817258
    Abstract: The output modal content of optical fibers that contain more than one spatial mode may be analyzed and quantified by measuring interference between co-propagating modes in the optical fiber. By spatially resolving the interference, an image of the spatial beat pattern between two modes may be constructed, thereby providing information about the modes supported by the optical fiber.
    Type: Grant
    Filed: June 20, 2008
    Date of Patent: October 19, 2010
    Assignee: OFS Fitel LLC
    Inventors: Poul Kristensen, Jeffrey W. Nicholson, Siddharth Ramachandran, Andrew D. Yablon
  • Publication number: 20090290841
    Abstract: An optical fiber that is relatively insensitive to bend loss and alleviates the problem of catastrophic bend loss comprises a core region and a cladding region configured to support and guide the propagation of light in a fundamental transverse mode. The cladding region includes (i) an outer cladding region, (ii) an annular pedestal (or ring) region, (iii) an annular inner trench region, and (iv) an annular outer trench region. The pedestal region and the outer cladding region each have a refractive index relatively close to that of the outer cladding region. In order to suppress HOMs the pedestal region is configured to resonantly couple at least one (unwanted) transverse mode of the core region (other than the fundamental mode) to at least one transverse mode of the pedestal region. In a preferred embodiment, the fiber is configured so that, at a signal wavelength of approximately 1550 nm, its bend loss is no more than about 0.1 dB/turn at bend radius of 5 mm and is no more than about 0.
    Type: Application
    Filed: May 27, 2009
    Publication date: November 26, 2009
    Applicant: OFS Fitel, LLC
    Inventors: Peter Ingo Borel, David John DiGiovanni, John Michael Fini, Poul Kristensen
  • Publication number: 20090185171
    Abstract: The output modal content of optical fibers that contain more than one spatial mode may be analyzed and quantified by measuring interference between co-propagating modes in the optical fiber. By spatially resolving the interference, an image of the spatial beat pattern between two modes may be constructed, thereby providing information about the modes supported by the optical fiber.
    Type: Application
    Filed: June 20, 2008
    Publication date: July 23, 2009
    Inventors: Poul Kristensen, Jeffrey W. Nicholson, Siddharth Ramachandran, Andrew D. Yablon
  • Publication number: 20090060437
    Abstract: An optical fiber that is relatively insensitive to bend loss comprises a core region and a cladding region configured to support and guide the propagation of light in a fundamental transverse mode, the cladding region including (i) an outer cladding region having a refractive index less than that of the core region, (ii) an annular cladding pedestal region having a refractive index higher than that of the outer cladding region and comparable to that of the core region, and (iii) an annular cladding inner trench region disposed between the core region and the pedestal region, the inner trench region having a refractive index less than that of the outer cladding region. In one embodiment, the fiber also includes a (iv) an annular cladding outer trench region disposed between the pedestal region and the outer cladding region, the outer trench region having a refractive index less than that of the outer cladding region.
    Type: Application
    Filed: February 28, 2008
    Publication date: March 5, 2009
    Inventors: John Michael Fini, Poul Kristensen
  • Patent number: 6865327
    Abstract: Applicants have discovered the existence of loss peaks in optical fiber transmission systems using wavelengths in the E-band and the L-band. Specifically, they have discovered the existence of narrow loss peaks at 1440 nm, 1583 nm and 1614 nm. Because the peaks are relatively narrow, they cannot be easily removed by conventional gain equalizers in long haul transmission systems, and although the peaks are relatively small, they can nonetheless cause transmission channels to drop out in amplified DWDM transmission systems. Applicants have further discovered that these loss peaks are due to carbon contamination of the transmission fiber. Thus optical fibers should be fabricated essentially free of carbon contamination. This means eliminating carbon-containing reagents in preform and tube-making processes.
    Type: Grant
    Filed: September 19, 2002
    Date of Patent: March 8, 2005
    Assignee: Fitel USA Corp.
    Inventors: Robert M. Atkins, Alice W. Liu, Poul Kristensen, Morten Østergaard Pedersen, Stig Nissen Knudsen, Jan Levin Nielsen, Jake Bromage, Kai H. Chang
  • Publication number: 20040042746
    Abstract: Applicants have discovered the existence of loss peaks in optical fiber transmission systems using wavelengths in the E-band and the L-band. Specifically, they have discovered the existence of narrow loss peaks at 1440 nm, 1583 nm and 1614 nm. Because the peaks are relatively narrow, they cannot be easily removed by conventional gain equalizers in long haul transmission systems, and although the peaks are relatively small, they can nonetheless cause transmission channels to drop out in amplified DWDM transmission systems. Applicants have further discovered that these loss peaks are due to carbon contamination of the transmission fiber. Thus optical fibers should be fabricated essentially free of carbon contamination. This means eliminating carbon-containing reagents in preform and tube-making processes.
    Type: Application
    Filed: September 19, 2002
    Publication date: March 4, 2004
    Inventors: Robert M. Atkins, Alice W. Liu, Poul Kristensen, Morten Ostergaard Pedersen, Stig Nissen Knudsen, Jan Levin Nielsen, Jake Bromage, Kai H. Chang
  • Patent number: 6654531
    Abstract: Disclosed is a dispersion-compensating (DC) module [740] comprising a first length of DC optical fiber [10] in tandem with a second length of a standard singlemode optical fiber. The DC fiber is fabricated from silica glass and has a refractive index profile that includes a core region [51] surrounded by a cladding region [52] having a nominal refractive index n4. The core region includes a central core [511] having a nominal refractive index n1, a “trench” [512] surrounding the central core having a nominal refractive index n2, and a “ridge” [513] surrounding the trench having a nominal refractive index n3. A range of refractive index profiles has been found that provides relative dispersion slopes (RDS) that are greater than 0.012 nm−1 and figures of merit that are greater than 200 ps/(nm·dB).
    Type: Grant
    Filed: September 30, 2002
    Date of Patent: November 25, 2003
    Assignee: Fitel USA Corp.
    Inventors: Lars Gruner-Nielsen, Poul Kristensen, Quang Nghi Trong Le, Marie Wandel
  • Publication number: 20030118307
    Abstract: Disclosed is a dispersion-compensating (DC) module [740] comprising a first length of DC optical fiber [10] in tandem with a second length of a standard singlemode optical fiber. The DC fiber is fabricated from silica glass and has a refractive index profile that includes a core region [51] surrounded by a cladding region [52] having a nominal refractive index n4. The core region includes a central core [511] having a nominal refractive index n1, a “trench” [512] surrounding the central core having a nominal refractive index n2, and a “ridge” [513] surrounding the trench having a nominal refractive index n3. A range of refractive index profiles has been found that provides relative dispersion slopes (RDS) that are greater than 0.012 nm−1 and figures of merit that are greater than 200 ps/(nm·dB).
    Type: Application
    Filed: September 30, 2002
    Publication date: June 26, 2003
    Inventors: Lars Gruner-Nielsen, Poul Kristensen, Quang Nghi Trong Le, Marie Wandel
  • Patent number: 6498887
    Abstract: Disclosed is a dispersion-compensating (DC) optical fiber 10 that is designed to support the fundamental mode of radiation at 1550 nm. The DC fiber is fabricated from silica glass and has a refractive index profile that includes a core region 51 surrounded by a cladding region 52 having a nominal refractive index n4. The core region includes a central core 511 having a nominal refractive index n1, a “trench” 512 surrounding the central core having a nominal refractive index n2, and a “ridge” 513 surrounding the trench having a nominal refractive index n3. A range of refractive index profiles has been found that provides relative dispersion slopes (RDS) that are greater than 0.012 nm−1 and figures of merit that are greater than 200 ps/(nm·dB). The range is conveniently expressed in terms of index differences and radial dimensions: central core: radius=1.5±0.5 &mgr;m, and 0.015<n1−n4<0.035; trench: width=4.3±1.0 &mgr;m, and −0.
    Type: Grant
    Filed: March 15, 2002
    Date of Patent: December 24, 2002
    Assignee: Fitel USA Corp.
    Inventors: Lars Gruner-Nielsen, Poul Kristensen, Quang Nghi Trong Le, Marie Wandel
  • Publication number: 20020181912
    Abstract: Disclosed is a dispersion-compensating (DC) optical fiber 10 that is designed to support the fundamental mode of radiation at 1550 nm. The DC fiber is fabricated from silica glass and has a refractive index profile that includes a core region 51 surrounded by a cladding region 52 having a nominal refractive index n4. The core region includes a central core 511 having a nominal refractive index n1, a “trench” 512 surrounding the central core having a nominal refractive index n2, and a “ridge” 513 surrounding the trench having a nominal refractive index n3. A range of refractive index profiles has been found that provides relative dispersion slopes (RDS) that are greater than 0.012 nm−1 and figures of merit that are greater than 200 ps/(nm·dB).
    Type: Application
    Filed: March 15, 2002
    Publication date: December 5, 2002
    Inventors: Lars Gruner-Nielsen, Poul Kristensen, Quang Nghi Trong Le, Marie Wandel