Patents by Inventor Pradeep Pandurang Shirodkar

Pradeep Pandurang Shirodkar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9309337
    Abstract: Provided are blends of branched hydrocarbon comb polymers having tailored branching and molecular weight parameters, with substantially linear polymers. Such blends have been found to have improved extensional rheological properties, while maintaining nearly the viscosity of the substantially linear polymers. The blends of the hydrocarbon comb polymers with the substantially linear polymers thus maintain the extrusion processing characteristics of the linear polymer alone, but have improved extensional flow processability, with strain hardening ratios (SHR) greater than 1. The blends are effective in blown film processing. Also disclosed are related methods for improving extensional flow processability using the branched hydrocarbon comb polymers, as well as the branched hydrocarbon comb polymers themselves, including as a property enhancing additive for such substantially linear polymers.
    Type: Grant
    Filed: April 2, 2013
    Date of Patent: April 12, 2016
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Johannes Matthieu Soulages, David John Lohse, Andy Haishung Tsou, Thomas Sun, Pamela Jean Wright, Nikos Hadjichristidis, Pradeep Pandurang Shirodkar
  • Publication number: 20130261264
    Abstract: Provided are blends of branched hydrocarbon comb polymers having tailored branching and molecular weight parameters, with substantially linear polymers. Such blends have been found to have improved extensional rheological properties, while maintaining nearly the viscosity of the substantially linear polymers. The blends of the hydrocarbon comb polymers with the substantially linear polymers thus maintain the extrusion processing characteristics of the linear polymer alone, but have improved extensional flow processability, with strain hardening ratios (SHR) greater than 1. The blends are effective in blown film processing. Also disclosed are related methods for improving extensional flow processability using the branched hydrocarbon comb polymers, as well as the branched hydrocarbon comb polymers themselves, including as a property enhancing additive for such substantially linear polymers.
    Type: Application
    Filed: April 2, 2013
    Publication date: October 3, 2013
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Johannes Mattieu Soulages, David John Lohse, Andy Haishung Tsou, Thomas Sun, Pamela Jean Wright, Nikos Hadjichristidis, Pradeep Pandurang Shirodkar
  • Patent number: 7101629
    Abstract: A film comprising a polyethylene composition, the polyethylene composition in one embodiment comprising a high molecular weight component having a weight average molecular weight of greater than 50,000 amu and a low molecular weight component having a weight average molecular weight of less than 50,000 amu; the polyethylene composition possessing a density of between 0.940 and 0.970 g/cm3, and an I21 value of less than 20 dg/min; characterized in that the polyethylene composition extrudes at an advantageously high specific throughput at an advantageously low melt temperature, and wherein the film has a gel count of less than 100.
    Type: Grant
    Filed: December 9, 2004
    Date of Patent: September 5, 2006
    Assignee: Univation Technologies, LLC
    Inventors: Porter C. Shannon, Rakesh Kumar, Pradeep Pandurang Shirodkar, Fred David Ehrman, Mark B. Davis, Keith Wesley Trapp, Dongming Li
  • Patent number: 7090927
    Abstract: A film comprising a polyethylene composition, the polyethylene composition in one embodiment comprising a high molecular weight component having a weight average molecular weight of greater than 50,000 amu and a low molecular weight component having a weight average molecular weight of less than 50,000 amu; the polyethylene composition possessing a density of between 0.940 and 0.970 g/cm3, and an I21 value of less than 20 dg/min; characterized in that the polyethylene composition extrudes at an advantageously high specific throughput at an advantageously low melt temperature, and wherein the film has a gel count of less than 100.
    Type: Grant
    Filed: December 9, 2004
    Date of Patent: August 15, 2006
    Assignee: Univation Technologies, LLC
    Inventors: Porter C. Shannon, Rakesh Kumar, Pradeep Pandurang Shirodkar, Fred David Ehrman, Mark B. Davis, Keith Wesley Trapp, Dongming Li
  • Patent number: 6943134
    Abstract: A process of producing a bimodal polyolefin composition is described, which includes in one embodiment contacting monomers with a supported bimetallic catalyst composition for a time sufficient to form a bimodal polyolefin composition that includes a high molecular weight polyolefin component and a low molecular weight polyolefin component; wherein the supported bimetallic catalyst includes a first catalyst component that is preferably non-metallocene, and a second catalyst component that includes a metallocene catalyst compound having at least one fluoride or fluorine containing leaving group, wherein the bimetallic catalyst is supported by an enhanced silica, dehydrated at a temperature of 800° C. or more in one embodiment.
    Type: Grant
    Filed: September 20, 2004
    Date of Patent: September 13, 2005
    Assignee: Univation Technologies, LLC
    Inventors: Chi-I Kuo, G. McCullough Laughlin, Pradeep Pandurang Shirodkar, Fred David Ehrman, Porter Shannon, Robert Lynn Santana, Steven K. Ackerman, Daniel Gerard O'Neil
  • Patent number: 6878454
    Abstract: A film comprising a polyethylene composition, the polyethylene composition in one embodiment comprising a high molecular weight component having a weight average molecular weight of greater than 50,000 amu and a low molecular weight component having a weight average molecular weight of less than 50,000 amu; the polyethylene composition possessing a density of between 0.940 and 0.970 g/cm3, and an I21 value of less than 20 dg/min; characterized in that the polyethylene composition extrudes at an advantageously high specific throughput at an advantageously low melt temperature, and wherein the film has a gel count of less than 100.
    Type: Grant
    Filed: February 18, 2004
    Date of Patent: April 12, 2005
    Assignee: Univation Technologies, LLC
    Inventors: Porter C. Shannon, Rakesh Kumar, Pradeep Pandurang Shirodkar, Fred David Ehrman, Mark B. Davis, Keith Wesley Trapp, Dongming Li
  • Patent number: 6875828
    Abstract: A process of producing a bimodal polyolefin composition is described, which includes in one embodiment contacting monomers with a supported bimetallic catalyst composition for a time sufficient to form a bimodal polyolefin composition that includes a high molecular weight polyolefin component and a low molecular weight polyolefin component; wherein the supported bimetallic catalyst includes a first catalyst component that is preferably non-metallocene, and a second catalyst component that includes a metallocene catalyst compound having at least one fluoride or fluorine containing leaving group, wherein the bimetallic catalyst is supported by an enhanced silica, dehydrated at a temperature of 800° C. or more in one embodiment.
    Type: Grant
    Filed: February 18, 2003
    Date of Patent: April 5, 2005
    Assignee: Univation Technologies, LLC
    Inventors: Chi-I Kuo, G. McCullough Laughlin, Pradeep Pandurang Shirodkar, Fred David Ehrman, Porter Shannon, Robert Lynn Santana, Steven K. Ackerman, Daniel Gerard O'Neil
  • Patent number: 6833416
    Abstract: A method of transitioning catalysts for polyolefin polymerization is provided. In one aspect, the process includes providing a polymerization reactor that includes a first catalyst system, contacting olefin monomers with the first catalyst system to form polyolefin in a first polymerization reaction and introducing a catalyst killer to the polymerization reactor in an amount sufficient to terminate the first polymerization reaction. The method further includes introducing a second catalyst system to the polymerization reactor in the presence of at least a portion of the catalyst killer, wherein the at least a portion of the catalyst killer is an amount sufficient to activate the second catalyst system and contacting olefin monomers with the second catalyst system to form polyolefin in a second polymerization reaction.
    Type: Grant
    Filed: February 27, 2004
    Date of Patent: December 21, 2004
    Assignee: Univation Technologies, LLC
    Inventors: Michael Allen Kinnan, Fred David Ehrman, Pradeep Pandurang Shirodkar, Mark Bradley Davis, Michele Lynn Grief-Rust
  • Publication number: 20040186250
    Abstract: A method of transitioning catalysts for polyolefin polymerization is provided. In one aspect, the process includes providing a polymerization reactor that includes a first catalyst system, contacting olefin monomers with the first catalyst system to form polyolefin in a first polymerization reaction and introducing a catalyst killer to the polymerization reactor in an amount sufficient to terminate the first polymerization reaction. The method further includes introducing a second catalyst system to the polymerization reactor in the presence of at least a portion of the catalyst killer, wherein the at least a portion of the catalyst killer is an amount sufficient to activate the second catalyst system and contacting olefin monomers with the second catalyst system to form polyolefin in a second polymerization reaction.
    Type: Application
    Filed: February 27, 2004
    Publication date: September 23, 2004
    Inventors: Michael Allen Kinnan, Fred David Ehrman, Pradeep Pandurang Shirodkar, Mark Bradley Davis, Michele Lynn Grief-Rust
  • Patent number: 6753390
    Abstract: A gas phase polymerization process for producing a polyolefin composition is described, which includes passing a gaseous stream containing hydrogen gas and one or more monomers, including ethylene monomers, through a reactor that includes a fluidized bed, under reactive conditions, in the presence of a catalyst that includes metallocene, to provide a polyolefin composition, wherein in one embodiment the fluidized bulk density is 60% or more of the settled bulk density (or, a voidage of 40% or less); and wherein the voidage is controlled by a number of factors including, in certain embodiments, (a) the reactor temperature being maintained at 100° C. or below; (b) the molar ratio of hydrogen gas to ethylene introduced into the reactor being 0.015 or below.
    Type: Grant
    Filed: February 18, 2003
    Date of Patent: June 22, 2004
    Assignee: Univation Technologies, LLC
    Inventors: Fred David Ehrman, Michael Elroy Muhle, Pradeep Pandurang Shirodkar, Keith Wesley Trapp
  • Publication number: 20040044154
    Abstract: A process of producing a bimodal polyolefin composition is described, which includes in one embodiment contacting monomers with a supported bimetallic catalyst composition for a time sufficient to form a bimodal polyolefin composition that includes a high molecular weight polyolefin component and a low molecular weight polyolefin component; wherein the supported bimetallic catalyst includes a first catalyst component that is preferably non-metallocene, and a second catalyst component that includes a metallocene catalyst compound having at least one fluoride or fluorine containing leaving group, wherein the bimetallic catalyst is supported by an enhanced silica, dehydrated at a temperature of 800° C. or more in one embodiment.
    Type: Application
    Filed: February 18, 2003
    Publication date: March 4, 2004
    Inventors: Chi-I Kuo, G. McCullough Laughlin, Pradeep Pandurang Shirodkar, Fred David Ehrman, Porter Clarke Shannon, Robert Lynn Santana, Steven K. Ackerman, Daniel Gerard O'Neil
  • Publication number: 20040044153
    Abstract: A gas phase polymerization process for producing a polyolefin composition is described, which includes passing a gaseous stream containing hydrogen gas and one or more monomers, including ethylene monomers, through a reactor that includes a fluidized bed, under reactive conditions, in the presence of a catalyst that includes metallocene, to provide a polyolefin composition, wherein in one embodiment the fluidized bulk density is 60% or more of the settled bulk density (or, a voidage of 40% or less); and wherein the voidage is controlled by a number of factors including, in certain embodiments, (a) the reactor temperature being maintained at 100° C. or below; (b) the molar ratio of hydrogen gas to ethylene introduced into the reactor being 0.015 or below.
    Type: Application
    Filed: February 18, 2003
    Publication date: March 4, 2004
    Inventors: Fred David Ehrman, Michael Elroy Muhle, Pradeep Pandurang Shirodkar, Keith Wesley Trapp
  • Patent number: 6509431
    Abstract: The invention relates to alteration of a linear low density polyethylene which is ordinarily free of long chain branching to introduce long chain branching into the polymer.
    Type: Grant
    Filed: January 18, 2000
    Date of Patent: January 21, 2003
    Assignee: ExxonMobil Oil Corporation
    Inventors: Robert Phillip Duttweiler, Michael Joseph Krause, Frederick Yip-Kwai Lo, Shih-May Christine Ong, Pradeep Pandurang Shirodkar
  • Patent number: 6403181
    Abstract: The invention relates to the production of high performance conduits. The invention includes the high performance conduits, the polyethylene resin used to make them, and the process for producing the resin which produces a resin with properties which are required, in accordance with the invention to yield the performance characteristics of the resin in conduits. The resin used in accordance with the invention exhibits a bimodal molecular weight distribution or broad molecular weight distribution and is of high molecular weight.
    Type: Grant
    Filed: April 25, 1997
    Date of Patent: June 11, 2002
    Assignee: Mobil Oil Corporation
    Inventors: David B. Barry, Vincent Joseph Crotty, Brian J. Egan, Robert I. Mink, Thomas Edward Nowlin, Sandra Denise Schregenberger, Kenneth George Schurzky, Pradeep Pandurang Shirodkar
  • Patent number: 6051525
    Abstract: A catalyst composition is described for preparing a high activity catalyst in silica which produces, in a single reactor, polyethylene with a broad or bimodal molecular weight distribution. The catalyst is prepared from the interaction of silica, previously calcined at 600.degree. C., with dibutylmagnesium, 1-butanol and titanium tetrachloride and a solution of methylalumoxane and ethylenebis[1-indenyl]zirconium dichloride.
    Type: Grant
    Filed: July 14, 1997
    Date of Patent: April 18, 2000
    Assignee: Mobil Corporation
    Inventors: Frederick Yip-Kwai Lo, Robert I. Mink, Thomas Edward Nowlin, Sandra Denise Schregenberger, Pradeep Pandurang Shirodkar