Patents by Inventor Pradeep Srinivasan

Pradeep Srinivasan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190278111
    Abstract: An optoelectronic device and method of making the same. The device comprising: a substrate; an epitaxial crystalline cladding layer, on top of the substrate; and an optically active region, above the epitaxial crystalline cladding layer; wherein the epitaxial crystalline cladding layer has a refractive index which is less than a refractive index of the optically active region, such that the optical power of the optoelectronic device is confined to the optically active region.
    Type: Application
    Filed: May 22, 2019
    Publication date: September 12, 2019
    Inventors: Guomin Yu, Hooman Abediasl, Damiana Lerose, Amit Singh Nagra, Pradeep Srinivasan, Haydn Jones
  • Patent number: 10401656
    Abstract: An optoelectronic device and method of making the same. The device comprising: a substrate; a regrown cladding layer, on top of the substrate; and an optically active region, above the regrown cladding layer; wherein the regrown cladding layer has a refractive index which is less than a refractive index of the optically active region, such that an optical mode of the optoelectronic device is confined to the optically active region.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: September 3, 2019
    Assignee: Rockley Photonics Limited
    Inventors: Guomin Yu, Hooman Abediasl, Damiana Lerose, Amit Singh Nagra, Pradeep Srinivasan, Haydn Frederick Jones
  • Patent number: 10404035
    Abstract: A laser source. In some embodiments, a multiple-output laser source includes a plurality of lasers, and a coupler having a plurality of inputs and a plurality of outputs. Each of the inputs of the coupler is connected to an output of a respective laser, and each of the outputs of the coupler is connected to an output of the multiple-output laser source. In some embodiments the laser source is connected to other equipment with a single composite connector for making an optical connection and a plurality of electrical connections.
    Type: Grant
    Filed: April 5, 2018
    Date of Patent: September 3, 2019
    Assignee: Rockley Photonics Limited
    Inventors: Thomas Pierre Schrans, Nicholas Kucharewski, Pradeep Srinivasan
  • Publication number: 20190179177
    Abstract: An optoelectronic device and method of making the same. The device comprising: a substrate; an epitaxial crystalline cladding layer, on top of the substrate; and an optically active region, above the epitaxial crystalline cladding layer; wherein the epitaxial crystalline cladding layer has a refractive index which is less than a refractive index of the optically active region, such that the optical power of the optoelectronic device is confined to the optically active region.
    Type: Application
    Filed: February 13, 2019
    Publication date: June 13, 2019
    Inventors: Andrew Rickman, Aaron Zilkie, Guomin Yu, Hooman Abediasl, Damiana Lerose, Amit Singh Nagra, Pradeep Srinivasan, Haydn Jones
  • Publication number: 20190139950
    Abstract: An optoelectronic device. The optoelectronic device operable to provide a PAM-N modulated output, the device comprising: M optical modulators, M being an integer greater than 1, the M optical modulators being arranged in a cascade, the device being configured to operate in N distinct transmittance states, as a PAM-N modulator, wherein, in each transmittance state of the N distinct transmittance states, each of the M optical modulators has applied to it a respective control voltage equal to one of: a first voltage or a second voltage. One or more of the modulators may include a substrate; a crystalline cladding layer, on top of the substrate; and an optically active region, above the crystalline cladding layer. The crystalline cladding layer may have a refractive index which is less than a refractive index of the optically active region.
    Type: Application
    Filed: November 19, 2018
    Publication date: May 9, 2019
    Inventors: Guomin Yu, Amit Singh Nagra, Damiana Lerose, Hooman Abediasl, Pradeep Srinivasan, Joyce Kai See Poon, Zheng Yong, Haydn Frederick Jones
  • Patent number: 10222677
    Abstract: An optoelectronic device and method of making the same. The device comprising: a substrate; an epitaxial crystalline cladding layer, on top of the substrate; and an optically active region, above the epitaxial crystalline cladding layer; wherein the epitaxial crystalline cladding layer has a refractive index which is less than a refractive index of the optically active region, such that the optical power of the optoelectronic device is confined to the optically active region.
    Type: Grant
    Filed: December 6, 2017
    Date of Patent: March 5, 2019
    Assignee: Rockley Photonics Limited
    Inventors: Guomin Yu, Hooman Abediasl, Damiana Lerose, Amit Singh Nagra, Pradeep Srinivasan, Haydn Frederick Jones, Andrew George Rickman, Aaron John Zilkie
  • Patent number: 10216059
    Abstract: An optoelectronic device and method of making the same. In some embodiments, the optoelectronic device includes a substrate, a Mach-Zehnder waveguide modulator, and an epitaxial crystalline cladding layer. The Mach-Zehnder waveguide modulator includes a left arm including a left SiGe optical waveguide, and a right arm including a right SiGe optical waveguide, each of the left and right optical waveguides including a junction region and a plurality of electrodes for providing a bias across the junction to enable control of the phase of light travelling through the junction regions via dispersion. The epitaxial crystalline cladding layer is on top of the substrate and beneath the junction region of the left optical waveguide and/or the junction region of the right optical waveguide, and has a refractive index which is less than a refractive index of the respective junction region(s), such that optical power is confined to the respective junction region(s).
    Type: Grant
    Filed: March 21, 2018
    Date of Patent: February 26, 2019
    Assignee: Rockley Photonics Limited
    Inventors: Guomin Yu, Aaron John Zilkie, Hooman Abediasl, Damiana Lerose, Amit Singh Nagra, Pradeep Srinivasan, Haydn Frederick Jones
  • Publication number: 20190041667
    Abstract: An optoelectronic device and method of making the same. The device comprising: a substrate; a regrown cladding layer, on top of the substrate; and an optically active region, above the regrown cladding layer; wherein the regrown cladding layer has a refractive index which is less than a refractive index of the optically active region, such that an optical mode of the optoelectronic device is confined to the optically active region.
    Type: Application
    Filed: September 27, 2018
    Publication date: February 7, 2019
    Inventors: Guomin Yu, Hooman Abediasl, Damiana Lerose, Amit Singh Nagra, Pradeep Srinivasan, Haydn Frederick Jones
  • Patent number: 10185203
    Abstract: An optoelectronic device and method of making the same. The device comprising: a substrate; a regrown cladding layer, on top of the substrate; and an optically active region, above the regrown cladding layer; wherein the regrown cladding layer has a refractive index which is less than a refractive index of the optically active region, such that an optical mode of the optoelectronic device is confined to the optically active region, and wherein the optically active region is formed of: SiGeSn, GeSn, InGaNAs, or InGaNAsSb.
    Type: Grant
    Filed: September 8, 2017
    Date of Patent: January 22, 2019
    Assignee: Rockley Photonics Limited
    Inventors: Guomin Yu, Hooman Abediasl, Damiana Lerose, Amit Singh Nagra, Pradeep Srinivasan, Haydn Frederick Jones
  • Publication number: 20190011639
    Abstract: A reconfigurable spectroscopy system comprises tunable lasers and wavelength lockers to lock to accurate reference wavelengths. Band combiners with differently optimized wavelength ranges multiplex the optical signal over the time domain, to emit a plurality of reference wavelengths for spectroscopy applications. The power requirements are greatly reduced by multiplexing over the time domain in time slots which do not affect sampling and receiving of the spectroscopy data.
    Type: Application
    Filed: July 3, 2018
    Publication date: January 10, 2019
    Inventors: Hooman ABEDIASL, Andrew George RICKMAN, Amit Singh NAGRA, Andrea TRITA, Thomas Pierre SCHRANS, Aaron John ZILKIE, Pradeep SRINIVASAN
  • Publication number: 20190011799
    Abstract: An optoelectronic device and method of making the same. The device comprising: a substrate; a regrown cladding layer, on top of the substrate; and an optically active region, above the regrown cladding layer; wherein the regrown cladding layer has a refractive index which is less than a refractive index of the optically active region, such that an optical mode of the optoelectronic device is confined to the optically active region, and wherein the optically active region is formed of: SiGeSn, GeSn, InGaNAs, or InGaNAsSb.
    Type: Application
    Filed: September 8, 2017
    Publication date: January 10, 2019
    Inventors: Guomin Yu, Hooman Abediasl, Damiana Lerose, Amit Singh Nagra, Pradeep Srinivasan, Haydn Frederick Jones
  • Publication number: 20180366915
    Abstract: A multi-channel laser source, including: a bus waveguide coupled, at an output end of the bus waveguide, to an output of the multi-channel laser source; a first semiconductor optical amplifier; a first back mirror; a first wavelength-dependent coupler, having a first resonant wavelength, on the bus waveguide; a second semiconductor optical amplifier; a second back mirror; and a second wavelength-dependent coupler, on the bus waveguide, having a second resonant wavelength, different from the first resonant wavelength. In some embodiments the first semiconductor optical amplifier is coupled to the bus waveguide by the first wavelength-dependent coupler, which is nearer to the output end of the bus waveguide than the second wavelength-dependent coupler, the second semiconductor optical amplifier is coupled to the bus waveguide by the second wavelength-dependent coupler, and the first wavelength-dependent coupler is configured to transmit light, at the second resonant wavelength, along the bus waveguide.
    Type: Application
    Filed: June 13, 2018
    Publication date: December 20, 2018
    Inventors: Aaron John Zilkie, Pradeep Srinivasan
  • Patent number: 10133094
    Abstract: An optoelectronic device and method of making the same. The device comprising: a substrate; a regrown cladding layer, on top of the substrate; and an optically active region, above the regrown cladding layer; wherein the regrown cladding layer has a refractive index which is less than a refractive index of the optically active region, such that an optical mode of the optoelectronic device is confined to the optically active region.
    Type: Grant
    Filed: September 8, 2017
    Date of Patent: November 20, 2018
    Assignee: Rockley Photonics Limited
    Inventors: Guomin Yu, Hooman Abediasl, Damiana Lerose, Amit Singh Nagra, Pradeep Srinivasan, Haydn Frederick Jones
  • Publication number: 20180294621
    Abstract: A laser source. In some embodiments, a multiple-output laser source includes a plurality of lasers, and a coupler having a plurality of inputs and a plurality of outputs. Each of the inputs of the coupler is connected to an output of a respective laser, and each of the outputs of the coupler is connected to an output of the multiple-output laser source. In some embodiments the laser source is connected to other equipment with a single composite connector for making an optical connection and a plurality of electrical connections.
    Type: Application
    Filed: April 5, 2018
    Publication date: October 11, 2018
    Inventors: Thomas Pierre Schrans, Nicholas Kucharewski, Pradeep Srinivasan
  • Publication number: 20180217469
    Abstract: An optoelectronic device and method of making the same. In some embodiments, the optoelectronic device includes a substrate, a Mach-Zehnder waveguide modulator, and an epitaxial crystalline cladding layer. The Mach-Zehnder waveguide modulator includes a left arm including a left SiGe optical waveguide, and a right arm including a right SiGe optical waveguide, each of the left and right optical waveguides including a junction region and a plurality of electrodes for providing a bias across the junction to enable control of the phase of light travelling through the junction regions via dispersion. The epitaxial crystalline cladding layer is on top of the substrate and beneath the junction region of the left optical waveguide and/or the junction region of the right optical waveguide, and has a refractive index which is less than a refractive index of the respective junction region(s), such that optical power is confined to the respective junction region(s).
    Type: Application
    Filed: March 21, 2018
    Publication date: August 2, 2018
    Inventors: Guomin Yu, Aaron John Zilkie, Hooman Abediasl, Damiana Lerose, Amit Singh Nagra, Pradeep Srinivasan, Haydn Frederick Jones
  • Publication number: 20180101082
    Abstract: An optoelectronic device and method of making the same. The device comprising: a substrate; an epitaxial crystalline cladding layer, on top of the substrate; and an optically active region, above the epitaxial crystalline cladding layer; wherein the epitaxial crystalline cladding layer has a refractive index which is less than a refractive index of the optically active region, such that the optical power of the optoelectronic device is confined to the optically active region.
    Type: Application
    Filed: December 6, 2017
    Publication date: April 12, 2018
    Inventors: Guomin Yu, Hooman Abediasl, Damiana Lerose, Amit Singh Nagra, Pradeep Srinivasan, Haydn Frederick Jones, Andrew George Rickman, Aaron John Zilkie
  • Publication number: 20170336565
    Abstract: Embodiments of the present disclosure are directed toward techniques and configurations for a single mode optical coupler device. In some embodiments, the device may include a multi-stage optical taper to convert light from a first mode field diameter to a second mode field diameter larger than the first mode field diameter, and a mirror formed in a dielectric layer under an approximately 45 degree angle with respect to a plane of the dielectric layer to reflect light from the multi-stage optical taper substantially perpendicularly to propagate the light in a single mode fashion. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: September 30, 2016
    Publication date: November 23, 2017
    Inventors: Judson D. Ryckman, Harel Frish, George A. Ghiurcan, Ansheng Liu, Haisheng Rong, Pradeep Srinivasan, Carsten Brandt, Isako Hoshino, Michael A. Creighton
  • Publication number: 20170288780
    Abstract: Apparatuses including integrated circuit (IC) optical assemblies and processes for fabrication of IC optical assemblies are disclosed herein. In some embodiments, the IC optical assemblies include an optical transmitter component electrically coupled to a first portion of a packaging substrate. The IC optical assemblies further include an optical transmitter driver component between the optical transmitter component and a second portion of the packaging substrate, wherein a first side of the optical transmitter driver component is electrically coupled to the optical transmitter component. The IC optical assemblies further include a plurality of bumps between a second side of the optical transmitter driver component and proximate the second portion of the packaging substrate, wherein the plurality of bumps are not directly coupled to the optical transmitter driver component.
    Type: Application
    Filed: March 31, 2016
    Publication date: October 5, 2017
    Inventors: Myung Jin Yim, Quan A. Tran, SeungJae Lee, Sandeep Razdan, Yigit O. Yilmaz, Pradeep Srinivasan, Jincheng Wang, Ansheng Liu
  • Patent number: 9658396
    Abstract: Described herein are an apparatus, system, and method for providing a vertical optical coupler (VOC) for planar photonics circuits such as photonics circuits fabricated on silicon-on-insulator (SOI) wafers. In one embodiment, the VOC comprises a waveguide made from a material having refractive index in a range of 1.45 to 3.45, the waveguide comprising: a first end configured to reflect light nearly vertical by total internal reflection between the waveguide and another medium, a second end to receive the light for reflection, and a third end to output the reflected light. The VOC couples with a Si waveguide having a first region including: a first end to receive light; and an inverted tapered end in the direction of light propagation to output the received light, wherein the inverted tapered end of the Si waveguide is positioned inside the waveguide.
    Type: Grant
    Filed: September 29, 2011
    Date of Patent: May 23, 2017
    Assignee: Intel Corporation
    Inventors: Haisheng Rong, Ofir Gan, Pradeep Srinivasan, Assia Barkai, I-Wei Andy Hsieh, Mahesh Krishnamurthi, Yun-Chung Neil Na
  • Patent number: 7388894
    Abstract: A waveguide to waveguide coupled hybrid master oscillator power amplifier (MOPA) includes a wavelength locked laser master oscillator (MO) first chip including a semiconductor substrate, a waveguide region having a gain section, one side of the MO including an integrated wavelength selective feedback element and the other side of the MO including an integrated reflective or coupling element on one side the waveguide and an emitting surface opposite the integrated reflective or coupling element for emitting light. A power amplifier (PA) second chip is stacked above or below the MO. The PA includes a semiconductor substrate including a waveguide region having a gain section, an integrated reflective or coupling element on a side of the PA aligned with light emitted from the emitting surface of the MO and a coupling grating or turning mirror and integrated lens on an opposite side of the PA for emitting an output beam.
    Type: Grant
    Filed: September 6, 2006
    Date of Patent: June 17, 2008
    Inventors: Jason Kirk O'Daniel, Eric Gordan Johnson, Oleg Smolski, Pradeep Srinivasan