Patents by Inventor Pramey Upadhyaya

Pramey Upadhyaya has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240045002
    Abstract: A nanodevice provides for electric-field control of magnon-QSD interactions. The nanodevice includes a ferroelectric substrate, a ferromagnetic material disposed over the ferroelectric substrate, and a nanodiamond including an ensemble of nitrogen-vacancy (NV) spins, each NV magnetically interfacing with the ferromagnetic material. An electric field is measured by applying a voltage across the ferroelectric substrate and the ferromagnetic material, changing a magnon excitation spectrum of the ferromagnetic material with respect to an electron spin resonance frequency of the ensemble of NV spins, and measuring a relaxation rate of the ensemble of NV spins.
    Type: Application
    Filed: October 13, 2023
    Publication date: February 8, 2024
    Applicant: Purdue Research Foundation
    Inventors: Vladimir M. Shalaev, Pramey Upadhyaya, Abhishek Bharatbhai Solanki, Simeon I. Bogdanov, Yong P. Chen, Mohammad Mushfiqur Rahman, Avinash Rustagi
  • Patent number: 11802921
    Abstract: A nanodevice provides for electric-field control of magnon-QSD interactions. The nanodevice includes a ferroelectric substrate, a ferromagnetic material disposed over the ferroelectric substrate, and a nanodiamond including an ensemble of nitrogen-vacancy (NV) spins, each NV magnetically interfacing with the ferromagnetic material. An electric field is measured by applying a voltage across the ferroelectric substrate and the ferromagnetic material, changing a magnon excitation spectrum of the ferromagnetic material with respect to an electron spin resonance frequency of the ensemble of NV spins, and measuring a relaxation rate of the ensemble of NV spins.
    Type: Grant
    Filed: November 30, 2021
    Date of Patent: October 31, 2023
    Assignee: Purdue Research Foundation
    Inventors: Vladimir M. Shalaev, Pramey Upadhyaya, Abhishek Bharatbhai Solanki, Simeon I. Bogdanov, Yong P. Chen, Mohammad Mushfiqur Rahman, Avinash Rustagi
  • Publication number: 20220171000
    Abstract: A nanodevice provides for electric-field control of magnon-QSD interactions. The nanodevice includes a ferroelectric substrate, a ferromagnetic material disposed over the ferroelectric substrate, and a nanodiamond including an ensemble of nitrogen-vacancy (NV) spins, each NV magnetically interfacing with the ferromagnetic material. An electric field is measured by applying a voltage across the ferroelectric substrate and the ferromagnetic material, changing a magnon excitation spectrum of the ferromagnetic material with respect to an electron spin resonance frequency of the ensemble of NV spins, and measuring a relaxation rate of the ensemble of NV spins.
    Type: Application
    Filed: November 30, 2021
    Publication date: June 2, 2022
    Applicant: Purdue Research Foundation
    Inventors: Vladimir M. Shalaev, Pramey Upadhyaya, Abhishek Bharatbhai Solanki, Simeon I. Bogdanov, Yong P. Chen, Mohammad Mushfiqur Rahman, Avinash Rustagi
  • Patent number: 9343658
    Abstract: A basic Spin-Orbit-Torque (SOT) structure with lateral structural asymmetry is provided that produces a new spin-orbit torque, resulting in zero-field current-induced switching of perpendicular magnetization. More complex structures can also be produced incorporating the basic structure of a ferromagnetic layer with a heavy non-magnetic metal layer having strong spin-orbit coupling on one side, and an insulator layer on the other side with a structural mirror asymmetry along the in-plane direction. The lateral structural asymmetry and new spin-orbit torque, in effect, replaces the role of the external in-plane magnetic field. The direction of switching is determined by the combination of the direction of applied current and the direction of symmetry breaking in the device.
    Type: Grant
    Filed: October 30, 2014
    Date of Patent: May 17, 2016
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Kang L. Wang, Pedram Khalili Amiri, Guoqiang Yu, Pramey Upadhyaya
  • Publication number: 20150129995
    Abstract: A basic Spin-Orbit-Torque (SOT) structure with lateral structural asymmetry is provided that produces a new spin-orbit torque, resulting in zero-field current-induced switching of perpendicular magnetization. More complex structures can also be produced incorporating the basic structure of a ferromagnetic layer with a heavy non-magnetic metal layer having strong spin-orbit coupling on one side, and an insulator layer on the other side with a structural mirror asymmetry along the in-plane direction. The lateral structural asymmetry and new spin-orbit torque, in effect, replaces the role of the external in-plane magnetic field. The direction of switching is determined by the combination of the direction of applied current and the direction of symmetry breaking in the device.
    Type: Application
    Filed: October 30, 2014
    Publication date: May 14, 2015
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Kang L. Wang, Pedram Khalili Amiri, Guoqiang Yu, Pramey Upadhyaya