Patents by Inventor Prantik Mazumder

Prantik Mazumder has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240140864
    Abstract: In some embodiments, a method comprises: depositing an adhesion layer comprising manganese oxide (MnOx) onto a surface of a glass or glass ceramic substrate; depositing a first layer of conductive metal onto the adhesion layer; and annealing the adhesion layer in a reducing atmosphere. Optionally, the method further comprises pre-annealing the adhesion layer in an oxidizing atmosphere before annealing the adhesion layer in a reducing atmosphere.
    Type: Application
    Filed: January 10, 2024
    Publication date: May 2, 2024
    Inventors: Hoon Kim, Prantik Mazumder, Aram Rezikyan, Rajesh Vaddi
  • Patent number: 11905201
    Abstract: An article includes a carrier including a carrier bonding surface, a sheet including a sheet bonding surface, and a surface modification layer disposed on at least one of the carrier bonding surface and the sheet bonding surface. The surface modification layer includes a plasma polymerized material. The plasma polymerized material planarizes the at least one of the carrier bonding surface and the sheet bonding surface. The carrier bonding surface and the sheet bonding surface are bonded with the surface modification layer so that the carrier is temporarily bonded with the sheet. A method of making an article includes depositing a surface modification layer on at least one of a carrier bonding surface and a sheet bonding surface. The method further includes bonding the carrier bonding surface and the sheet bonding surface with the surface modification layer to temporarily bond the carrier with the sheet.
    Type: Grant
    Filed: June 22, 2016
    Date of Patent: February 20, 2024
    Assignee: CORNING INCORPORATED
    Inventors: Robert Alan Bellman, Robert George Manley, Prantik Mazumder
  • Patent number: 11891687
    Abstract: A method is provided for manufacturing an article comprising a transparent conductive material, wherein a transparent conductive material (e.g., indium tin oxide) is deposited onto a substrate (e.g., fused silica) by physical vapor deposition, then annealed at high temperature (i.e., at least 450° C.) in a nitrogen atmosphere. The resulting article comprises a transparent conductive material that reduces the trade-off between low resistivity (or sheet resistance) and high near infrared transmission. For example, the transparent conductive material thus obtained may possess a transmission of at least 80% at 1550 nm while having a resistivity of less than or equal to about 5×10?4 Ohm-cm and a Haacke figure of merit of at least about 40×10?4??1. Also provided is a method for modulating the resistivity and/or the near infrared transmission of a transparent conductive material by annealing the transparent conductive material at a high temperature under nitrogen atmosphere.
    Type: Grant
    Filed: September 30, 2020
    Date of Patent: February 6, 2024
    Assignees: CORNING INCORPORATED, ICREA, ICFO
    Inventors: Rinu Maniyara, Prantik Mazumder, Valerio Pruneri
  • Patent number: 11885998
    Abstract: A display backlight unit is disclosed including a glass substrate with a first major surface and a second major surface opposite the first major surface, the first major surface coated with at least one of 3-mercaptopropyl trimethoxysilane, aminopropyl triethoxysilane, or silanated PMMA, and a plurality of PMMA-containing light extraction dots deposited on the coated first major surface.
    Type: Grant
    Filed: February 1, 2021
    Date of Patent: January 30, 2024
    Assignee: CORNING INCORPORATED
    Inventors: Joy Banerjee, Indrani Bhattacharyya, Prantik Mazumder, Wanda Janina Walczak
  • Patent number: 11859064
    Abstract: A method of modifying a deformable substrate that includes depositing a sessile liquid droplet on a first surface of a deformable substrate, the sessile liquid droplet forming a deformed region in the first surface of the deformable substrate, the deformed region having a recess and a perimeter rim, the recess extending toward a second surface of the deformable substrate, and the perimeter rim extending away from the second surface of the deformable substrate and curing the deformable substrate, thereby increasing an elastic modulus of the deformable substrate such that upon removal of the sessile liquid droplet, the deformed region remains in the first surface of the deformable substrate.
    Type: Grant
    Filed: May 23, 2019
    Date of Patent: January 2, 2024
    Assignee: CORNING INCORPORATED
    Inventors: Prantik Mazumder, Wageesha Senaratne
  • Patent number: 11807571
    Abstract: Provided herein are methods for forming one or more silicon nanostructures, such as silicon nanotubes, and a silica-containing glass substrate. As a result of the process used to prepare the silicon nanostructures, the silica-containing glass substrate comprises one or more nanopillars and the one or more silicon nanostructures extend from the nanopillars of the silica-containing glass substrate. The silicon nanostructures include nanotubes and optionally nanowires. A further aspect is a method for preparing silicon nanostructures on a silica-containing glass substrate. The method includes providing one or more metal nanoparticles on a silica-containing glass substrate and then performing reactive ion etching of the silica-containing glass substrate under conditions that are suitable for the formation of one or more silicon nanostructures.
    Type: Grant
    Filed: December 8, 2021
    Date of Patent: November 7, 2023
    Assignees: Corning Incorporated, ICFO
    Inventors: Albert Carrilero, Prantik Mazumder, Valerio Pruneri
  • Patent number: 11798815
    Abstract: A method of manufacturing a glass article comprising: forming a first layer of a first metal on a glass substrate, the glass substrate comprising silicon dioxide and aluminum oxide; subjecting the glass substrate with the first layer of the first metal to a first thermal treatment; forming a second layer of a second metal over the first layer of the first metal; and subjecting the second layer of the second metal to a second thermal treatment, the first thermal treatment and the second thermal treatment inducing intermixing of the first metal, the second metal, and at least one of aluminum, aluminum oxide, silicon, and silicon dioxide of the glass substrate to form a metallic region comprising the first metal, the second metal, aluminum oxide, and silicon dioxide. The first metal can be silver. The second metal can be copper.
    Type: Grant
    Filed: December 16, 2020
    Date of Patent: October 24, 2023
    Assignee: Corning Incorporated
    Inventors: Philip Simon Brown, Mandakini Kanungo, Prantik Mazumder
  • Patent number: 11756847
    Abstract: A method of manufacturing a glass article comprises: (A) forming a first layer of catalyst metal on a glass substrate; (B) heating the glass substrate; (C) forming a second layer of an alloy of a first metal and a second metal on the first layer; (D) heating the glass substrate, thereby forming a glass article comprising: (i) the glass substrate; (ii) an oxide of the first metal covalently bonded thereto; and (iii) a metallic region bonded to the oxide, the metallic region comprising the catalyst, first, and second metals. In embodiments, the method further comprises (E) forming a third layer of a primary metal on the metallic region; and (F) heating the glass article thereby forming the glass article comprising: (i) the oxide of the first metal covalently bonded the glass substrate; and (ii) a new metallic region bonded to the oxide comprising the catalyst, first, second, and primary metals.
    Type: Grant
    Filed: June 22, 2022
    Date of Patent: September 12, 2023
    Assignee: Corning Incorporated
    Inventors: Kaveh Adib, Philip Simon Brown, Mandakini Kanungo, Prantik Mazumder, Rajesh Vaddi
  • Publication number: 20230152506
    Abstract: A display backlight unit is disclosed including a glass substrate with a first major surface and a second major surface opposite the first major surface, the first major surface coated with at least one of 3-mercaptopropyl trimethoxysilane, aminopropyl triethoxysilane, or silanated PMMA, and a plurality of PMMA-containing light extraction dots deposited on the coated first major surface.
    Type: Application
    Filed: February 1, 2021
    Publication date: May 18, 2023
    Inventors: Joy Banerjee, Indrani Bhattacharyya, Prantik Mazumder, Wanda Janina Walczak
  • Patent number: 11629096
    Abstract: Described herein are articles and methods of making articles, for example glass articles, comprising a thin sheet and a carrier, wherein the thin sheet and carrier are bonded together using a modification (coating) layer, for example a coating layer comprising a cationic surfactant or a coating layer comprising an organic salt, and associated deposition methods. The modification layer bonds the thin sheet and carrier together with sufficient bond strength to prevent delamination of the thin sheet and the carrier during high temperature (? 500° C.) processing while also preventing formation of a permanent bond between the sheets during such processing.
    Type: Grant
    Filed: November 20, 2018
    Date of Patent: April 18, 2023
    Assignee: Corning Incorporated
    Inventors: Daniel Florian Acquard, Indrani Bhattacharyya, Sushmit Sunil Kumar Goyal, Prantik Mazumder, Pei-Lien Tseng
  • Publication number: 20230091841
    Abstract: Described herein are articles and methods of making articles, including a first sheet and a second sheet, wherein the thin sheet and carrier are bonded together using a coating layer, preferably a hydrocarbon polymer coating layer, and associated deposition methods and inert gas treatments that may be applied on either sheet, or both, to control van der Waals, hydrogen and covalent bonding between the sheets. The coating layer bonds the sheets together to prevent formation of a permanent bond at high temperature processing while at the same time maintaining a sufficient bond to prevent delamination during high temperature processing.
    Type: Application
    Filed: November 17, 2022
    Publication date: March 23, 2023
    Inventors: Kaveh Adib, Robert Alan Bellman, Jiangwei Feng, Georgiy M Guryanov, Jhih-Wei Liang, Shiwen Liu, Prantik Mazumder
  • Patent number: 11535553
    Abstract: Described herein are articles and methods of making articles, including a first sheet and a second sheet, wherein the thin sheet and carrier are bonded together using a coating layer, preferably a hydrocarbon polymer coating layer, and associated deposition methods and inert gas treatments that may be applied on either sheet, or both, to control van der Waals, hydrogen and covalent bonding between the sheets. The coating layer bonds the sheets together to prevent formation of a permanent bond at high temperature processing while at the same time maintaining a sufficient bond to prevent delamination during high temperature processing.
    Type: Grant
    Filed: August 29, 2017
    Date of Patent: December 27, 2022
    Assignee: Corning Incorporated
    Inventors: Kaveh Adib, Robert Alan Bellman, Jiangwei Feng, Georgiy M Guryanov, Jhih-Wei Liang, Shiwen Liu, Prantik Mazumder
  • Publication number: 20220399242
    Abstract: A method of manufacturing a glass article comprises: (A) forming a first layer of catalyst metal on a glass substrate; (B) heating the glass substrate; (C) forming a second layer of an alloy of a first metal and a second metal on the first layer; (D) heating the glass substrate, thereby forming a glass article comprising: (i) the glass substrate; (ii) an oxide of the first metal covalently bonded thereto; and (iii) a metallic region bonded to the oxide, the metallic region comprising the catalyst, first, and second metals. In embodiments, the method further comprises (E) forming a third layer of a primary metal on the metallic region; and (F) heating the glass article thereby forming the glass article comprising: (i) the oxide of the first metal covalently bonded the glass substrate; and (ii) a new metallic region bonded to the oxide comprising the catalyst, first, second, and primary metals.
    Type: Application
    Filed: June 22, 2022
    Publication date: December 15, 2022
    Inventors: Kaveh Adib, Philip Simon Brown, Mandakini Kanungo, Prantik Mazumder, Rajesh Vaddi
  • Publication number: 20220380882
    Abstract: An article comprising: (i) a body, the body comprising a material and a transmittance greater than or equal to 90% throughout an electromagnetic radiation wavelength range of 250 nm to 800 nm; and (ii) cupric oxide (CuO) in direct contact with the material of the body, the cupric oxide (CuO) comprising a thickness that is less than or equal to 1.3 nm. Also disclosed is the article further comprising: an ultra-thin metal film disposed directly on the cupric oxide (CuO). The article demonstrates a transmittance greater than or equal to 65% throughout an electromagnetic radiation wavelength range of 300 nm to 1400 nm. The ultra-thin metal film can be silver (Ag), gold (Au), copper (Cu), or platinum (Pt). The ultra-thin metal film comprises a thickness within a range of 1 nm to 5 nm. The article at the ultra-thin metal film has a sheet resistance of less than or equal to 2100 ?/?. Additionally, a method of forming the article.
    Type: Application
    Filed: May 25, 2022
    Publication date: December 1, 2022
    Inventors: Rinu Abraham Maniyara, Daniel Martínez Cercós, Prantik Mazumder, Bruno Paulillo, Valerio Pruneri
  • Patent number: 11456225
    Abstract: A method of manufacturing a glass article comprises: (A) forming a first layer of catalyst metal on a glass substrate; (B) heating the glass substrate; (C) forming a second layer of an alloy of a first metal and a second metal on the first layer; (D) heating the glass substrate, thereby forming a glass article comprising: (i) the glass substrate; (ii) an oxide of the first metal covalently bonded thereto; and (iii) a metallic region bonded to the oxide, the metallic region comprising the catalyst, first, and second metals. In embodiments, the method further comprises (E) forming a third layer of a primary metal on the metallic region; and (F) heating the glass article thereby forming the glass article comprising: (i) the oxide of the first metal covalently bonded the glass substrate; and (ii) a new metallic region bonded to the oxide comprising the catalyst, first, second, and primary metals.
    Type: Grant
    Filed: March 30, 2021
    Date of Patent: September 27, 2022
    Assignee: Corning Incorporated
    Inventors: Kaveh Adib, Philip Simon Brown, Mandakini Kanungo, Prantik Mazumder, Rajesh Vaddi
  • Publication number: 20220179126
    Abstract: A method for fabricating a structured surface, includes: providing a transparent substrate; disposing a dewettable film over the substrate; annealing the dewettable film to form a plurality of islands; forming a coating over the plurality of islands; and etching the plurality of islands to form a structured array of surface features in the coating. A structured polymer and/or structured glass, includes: a structured array of surface features, such that the structured array of surface features has at least one dimension in a range of 0.5 nm to 5000 nm.
    Type: Application
    Filed: March 31, 2020
    Publication date: June 9, 2022
    Inventors: Prantik Mazumder, Valerio Pruneri, Juan Rombaut
  • Publication number: 20220140227
    Abstract: An article including a support unit, the support unit including a support substrate and a bonding layer such that the bonding layer is bonded to a surface of the support substrate. Furthermore, a total thickness variation TTV across a width of the support unit is about 2.0 microns or less.
    Type: Application
    Filed: November 1, 2021
    Publication date: May 5, 2022
    Inventors: Indrani Bhattacharyya, Julia Anne Dorothee Brueckner, Ya-Huei Chang, Bokyung Kong, Prantik Mazumder, Jun Ro Yoon, Jian-Zhi Jay Zhang
  • Publication number: 20220098094
    Abstract: Provided herein are methods for forming one or more silicon nanostructures, such as silicon nanotubes, and a silica-containing glass substrate. As a result of the process used to prepare the silicon nanostructures, the silica-containing glass substrate comprises one or more nanopillars and the one or more silicon nanostructures extend from the nanopillars of the silica-containing glass substrate. The silicon nanostructures include nanotubes and optionally nanowires. A further aspect is a method for preparing silicon nanostructures on a silica-containing glass substrate. The method includes providing one or more metal nanoparticles on a silica-containing glass substrate and then performing reactive ion etching of the silica-containing glass substrate under conditions that are suitable for the formation of one or more silicon nanostructures.
    Type: Application
    Filed: December 8, 2021
    Publication date: March 31, 2022
    Inventors: Albert Carrilero, Prantik Mazumder, Valerio Pruneri
  • Publication number: 20220098043
    Abstract: A method of forming a functionalized device substrate is provided that includes the steps of: forming a conductive layer on a growth substrate; applying a polymeric layer to a device substrate, wherein a coupling agent couples the polymeric layer to the device substrate; coupling the polymeric layer to the conductive layer on the growth substrate; and peeling the growth substrate from the conductive layer.
    Type: Application
    Filed: December 9, 2021
    Publication date: March 31, 2022
    Inventors: Therese Francoise Arliguie, Theresa Chang, Miriam Marchena Martín-Francés, Prantik Mazumder, Valerio Pruneri, Frederic Christian Wagner
  • Patent number: 11225434
    Abstract: Provided herein are methods for forming one or more silicon nanostructures, such as silicon nanotubes, and a silica-containing glass substrate. As a result of the process used to prepare the silicon nanostructures, the silica-containing glass substrate comprises one or more nanopillars and the one or more silicon nanostructures extend from the nanopillars of the silica-containing glass substrate. The silicon nanostructures include nanotubes and optionally nanowires. A further aspect is a method for preparing silicon nanostructures on a silica-containing glass substrate. The method includes providing one or more metal nanoparticles on a silica-containing glass substrate and then performing reactive ion etching of the silica-containing glass substrate under conditions that are suitable for the formation of one or more silicon nanostructures.
    Type: Grant
    Filed: June 3, 2020
    Date of Patent: January 18, 2022
    Assignees: CORNING INCORPORATED, ICFO
    Inventors: Albert Carrilero, Prantik Mazumder, Valerio Pruneri