Patents by Inventor Pravin K. Narwankar

Pravin K. Narwankar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10633740
    Abstract: Protective coatings on an aerospace component and methods for depositing the protective coatings are provided. A method for depositing a coating on an aerospace component includes exposing an aerospace component to a first precursor and a first reactant to form a first deposited layer on a surface of the aerospace component by a chemical vapor deposition (CVD) process or a first atomic layer deposition (ALD) process and exposing the aerospace component to a second precursor and a second reactant to form a second deposited layer on the first deposited layer by a second ALD process, where the first deposited layer and the second deposited layer have different compositions from each other.
    Type: Grant
    Filed: March 18, 2019
    Date of Patent: April 28, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Yuriy Melnik, Sukti Chatterjee, Kaushal Gangakhedkar, Jonathan Frankel, Lance A. Scudder, Pravin K. Narwankar, David Alexander Britz, Thomas Knisley, Mark Saly, David Thompson
  • Publication number: 20200024736
    Abstract: A reactor for coating particles includes a vacuum chamber configured to hold particles to be coated, a vacuum port to exhaust gas from the vacuum chamber via the outlet of the vacuum chamber, a chemical delivery system configured to flow a process gas into the particles via a gas inlet on the vacuum chamber, one or more vibrational actuators located on a first mounting surface of the vacuum chamber, and a controller configured to cause the one or more vibrational actuators to generate a vibrational motion in the vacuum chamber sufficient to induce a vibrational motion in the particles held within the vacuum chamber.
    Type: Application
    Filed: July 18, 2019
    Publication date: January 23, 2020
    Inventors: Kaushal Gangakhedkar, Jonathan Frankel, Colin C. Neikirk, Pravin K. Narwankar
  • Publication number: 20190376182
    Abstract: A reactor for coating particles includes one or more motors, a rotary vacuum chamber configured to hold particles to be coated and coupled to the motors, a controller configured to cause the motors to rotate the chamber in a first direction about an axial axis at a rotation speed sufficient to force the particles to be centrifuged against an inner diameter of the chamber, a vacuum port to exhaust gas from the rotary vacuum chamber, a paddle assembly including a rotatable drive shaft extending through the chamber and coupled to the motors and at least one paddle extending radially from the drive shaft, such that rotation of the drive shaft by the motors orbits the paddle about the drive shaft in a second direction, and a chemical delivery system including a gas outlet on the paddle configured inject process gas into the particles.
    Type: Application
    Filed: June 11, 2019
    Publication date: December 12, 2019
    Inventors: Colin C. Neikirk, Pravin K. Narwankar, Kaushal Gangakhedkar, Visweswaren Sivaramakrishnan, Jonathan Frankel, David Masayuki Ishikawa, Quoc Truong, Joseph Yudovsky
  • Publication number: 20190376181
    Abstract: A reactor for coating particles includes one or more motors, a rotary vacuum chamber configured to hold particles to be coated, wherein the rotary vacuum chamber is coupled to the motors, a controller configured to cause the motors to rotate the rotary vacuum chamber about an axial axis of the rotary vacuum chamber such that the particles undergo tumbling agitation, a vacuum port to exhaust gas from the rotary vacuum chamber, a paddle assembly including a rotatable drive shaft extending through the rotary vacuum chamber and coupled to the motors and at least one paddle extending radially from the drive shaft, such that rotation of the drive shaft by the motors orbits the paddle about the drive shaft in a second direction, and a chemical delivery system including a gas outlet on the paddle configured inject process gas into the particles.
    Type: Application
    Filed: June 11, 2019
    Publication date: December 12, 2019
    Inventors: Colin C. Neikirk, Pravin K. Narwankar, Kaushal Gangakhedkar, Visweswaren Sivaramakrishnan, Jonathan Frankel, David Masayuki Ishikawa, Quoc Truong, Joseph Yudovsky
  • Publication number: 20190330746
    Abstract: Using the systems and methods discussed herein, CMAS corrosion is inhibited via CMAS interception in an engine environment and/or is prevented or reduced by the formation of a metal oxide protective coating on a hot engine section component. The CMAS interception can occur while the engine is in operation in flight or in a testing or quality control environment. The metal oxide protective coating can be applied over other coatings, including Gd-zirconates (GZO) or yttria-stabilized zirconia (YSZ). The metal oxide protective coating is applied at original equipment manufacturers (OEM) and can also be applied in-situ using a gas injection system during engine use in-flight or during maintenance or quality testing. The metal oxide protective coating contains a rare earth element, aluminum, zirconium, chromium, or combinations thereof, and is from 1 nm to 3 microns in thickness.
    Type: Application
    Filed: February 22, 2019
    Publication date: October 31, 2019
    Inventors: David BRITZ, Pravin K. NARWANKAR, David THOMPSON, Yuriy MELNIK, Sukti CHATTERJEE
  • Publication number: 20190284692
    Abstract: A gas distribution assembly for applying a coating on an interior of a plurality of components includes a support with a plurality of component cavities formed within the support. Each component cavity corresponds to a respective component to fluidly couple with an interior of the respective component. A first gas source flow line is fluidly coupled with each of the component cavities to provide a first gas from a first gas source to each of the component cavities, and a second gas source flow line is fluidly coupled with each of the component cavities to provide a second gas from a second gas source to each of the component cavities.
    Type: Application
    Filed: March 18, 2019
    Publication date: September 19, 2019
    Inventors: Yuriy MELNIK, Sukti CHATTERJEE, Kaushal GANGAKHEDKAR, Jonathan FRANKEL, Lance A. SCUDDER, Pravin K. NARWANKAR, David Alexander BRITZ, David Masayuki ISHIKAWA
  • Publication number: 20190284686
    Abstract: Embodiments of the present disclosure generally relate to protective coatings on an aerospace component and methods for depositing the protective coatings. In one or more embodiments, a method for depositing a coating on an aerospace component includes exposing an aerospace component to a first precursor and a first reactant to form a first deposited layer on a surface of the aerospace component by a chemical vapor deposition (CVD) process or a first atomic layer deposition (ALD) process and exposing the aerospace component to a second precursor and a second reactant to form a second deposited layer on the first deposited layer by a second ALD process, where the first deposited layer and the second deposited layer have different compositions from each other.
    Type: Application
    Filed: March 18, 2019
    Publication date: September 19, 2019
    Inventors: Yuriy MELNIK, Sukti CHATTERJEE, Kaushal GANGAKHEDKAR, Jonathan FRANKEL, Lance A. SCUDDER, Pravin K. NARWANKAR, David Alexander BRITZ, Thomas KNISLEY, Mark SALY, David THOMPSON
  • Publication number: 20190119810
    Abstract: Methods of removing native oxide layers and depositing dielectric layers having a controlled number of active sites on MEMS devices for biological applications are disclosed. In one aspect, a method includes removing a native oxide layer from a surface of the substrate by exposing the substrate to one or more ligands in vapor phase to volatize the native oxide layer and then thermally desorbing or otherwise etching the volatized native oxide layer. In another aspect, a method includes depositing a dielectric layer selected to provide a controlled number of active sites on the surface of the substrate. In yet another aspect, a method includes both removing a native oxide layer from a surface of the substrate by exposing the substrate to one or more ligands and depositing a dielectric layer selected to provide a controlled number of active sites on the surface of the substrate.
    Type: Application
    Filed: September 21, 2018
    Publication date: April 25, 2019
    Inventors: Ranga Rao ARNEPALLI, Colin Costano NEIKIRK, Yuriy MELNIK, Suresh Chand SETH, Pravin K. NARWANKAR, Sukti CHATTERJEE, Lance A. SCUDDER
  • Patent number: 10236198
    Abstract: Methods of processing a plurality of substrates using a processing chamber with bottom and top openings and a plurality of processing slots are provided. A substrate positioned on a carrier is loaded into a first end of a processing chamber body through the bottom opening. The carrier is moved through a plurality of processing slots to a top opening at a second end of the chamber body and then removed from the processing chamber through the top opening.
    Type: Grant
    Filed: August 29, 2017
    Date of Patent: March 19, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Banqiu Wu, Nag B. Patibandla, Toshiaki Fujita, Ralf Hofmann, Pravin K. Narwankar, Jeonghoon Oh, Srinivas Satya, Li-Qun Xia
  • Publication number: 20180164245
    Abstract: The present disclosure relates to a method of depositing a polymer layer, including: providing a substrate, having a sensor structure disposed on the substrate, to a substrate support within a hot wire chemical vapor deposition (HWCVD) chamber; providing a process gas comprising an initiator gas and a monomer gas and a carrier gas to the HWCVD chamber; heating a plurality of filaments disposed in the HWCVD chamber to a first temperature sufficient to activate the initiator gas without decomposing the monomer gas; and exposing the substrate to initiator radicals from the activated initiator gas and to the monomer gas to deposit a polymer layer atop the sensor structure.
    Type: Application
    Filed: December 6, 2017
    Publication date: June 14, 2018
    Inventors: Colin NEIKIRK, Yuriy MELNIK, Pravin K. NARWANKAR
  • Publication number: 20180148832
    Abstract: In some embodiments, a method of processing a substrate disposed within a processing volume of a hot wire chemical vapor deposition (HWCVD) process chamber, includes: (a) providing a carbon containing precursor gas into the processing volume, the carbon containing precursor gas being provided into the processing volume from an inlet located a first distance above a surface of the substrate; (b) breaking hydrogen-carbon bonds within molecules of the carbon containing precursor via introduction of hydrogen radicals to the processing volume to deposit a flowable carbon layer atop the substrate, wherein the hydrogen radicals are formed by flowing a hydrogen containing gas over a plurality of filaments disposed within the processing volume above the substrate and the inlet.
    Type: Application
    Filed: November 1, 2017
    Publication date: May 31, 2018
    Inventors: Sukti CHATTERJEE, LANCE SCUDDER, ERIC H. LIU, PRAVIN K. NARWANKAR, PRAMIT MANNA, ABHIJIT MALLICK
  • Publication number: 20180148833
    Abstract: In some embodiments, a method of processing a substrate disposed within a processing volume of a hot wire chemical vapor deposition (HWCVD) process chamber, includes: (a) providing a silicon containing precursor gas into the processing volume, the silicon containing precursor gas is provided into the processing volume from an inlet located a first distance above a surface of the substrate; (b) breaking hydrogen-silicon bonds within molecules of the silicon containing precursor via introduction of hydrogen radicals to the processing volume to deposit a flowable silicon containing layer atop the substrate, wherein the hydrogen radicals are formed by flowing a hydrogen containing gas over a plurality of wires disposed within the processing volume above the substrate and the inlet.
    Type: Application
    Filed: November 1, 2017
    Publication date: May 31, 2018
    Inventors: Sukti CHATTERJEE, LANCE SCUDDER, ERIC H. LIU, PRAVIN K. NARWANKAR, PRAMIT MANNA, ABHIJIT MALLICK
  • Publication number: 20170365491
    Abstract: A processing chamber having a plurality of movable substrate carriers stacked therein for continuously processing a plurality of substrates is provided. The movable substrate carrier is capable of being transported from outside of the processing chamber, e.g., being transferred from a load luck chamber, into the processing chamber and out of the processing chamber, e.g., being transferred into another load luck chamber. Process gases delivered into the processing chamber are spatially separated into a plurality of processing slots, and/or temporally controlled. The processing chamber can be part of a multi-chamber substrate processing system.
    Type: Application
    Filed: August 29, 2017
    Publication date: December 21, 2017
    Inventors: Banqiu Wu, Nag B. Patibandla, Toshiaki Fujita, Ralf Hofmann, Pravin K. Narwankar, Jeonghoon Oh, Srinivas Satya, Li-Qun Xia
  • Publication number: 20170317225
    Abstract: Methods and systems for all wrap around porous silicon formation are provided herein. In some embodiments, a substrate holder used for all wrap around porous silicon formation may include a body having a tapered opening along a first edge of the body, wherein the tapered opening is configured to release byproduct gases produced during porous silicon formation on a substrate supported by the substrate holder, a first vacuum channel formed in the body and extending to a first surface of the body, and a first sealing element disposed on the first surface of the body and fluidly coupled to the first vacuum channel, where in the first sealing element supports the substrate when disposed thereon.
    Type: Application
    Filed: December 7, 2015
    Publication date: November 2, 2017
    Inventors: Takao YONEHARA, Pravin K. NARWANKAR, Jonathan S. FRANKEL
  • Patent number: 9748125
    Abstract: A processing chamber having a plurality of movable substrate carriers stacked therein for continuously processing a plurality of substrates is provided. The movable substrate carrier is capable of being transported from outside of the processing chamber, e.g., being transferred from a load luck chamber, into the processing chamber and out of the processing chamber, e.g., being transferred into another load luck chamber. Process gases delivered into the processing chamber are spatially separated into a plurality of processing slots, and/or temporally controlled. The processing chamber can be part of a multi-chamber substrate processing system.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: August 29, 2017
    Assignee: Applied Materials, Inc.
    Inventors: Banqiu Wu, Nag B. Patibandla, Toshiaki Fujita, Ralf Hofmann, Pravin K. Narwankar, Jeonghoon Oh, Srinivas Satya, Li-Qun Xia
  • Patent number: 9305838
    Abstract: An integrated circuit with BEOL interconnects may comprise: a substrate including a semiconductor device; a first layer of dielectric over the surface of the substrate, the first layer of dielectric including a filled via for making electrical contact to the semiconductor device; and a second layer of dielectric on the first layer of dielectric, the second layer of dielectric including a trench running perpendicular to the longitudinal axis of the filled via, the trench being filled with an interconnect line, the interconnect line comprising cross-linked carbon nanotubes and being physically and electrically connected to the filled via. Cross-linked CNTs are grown on catalyst particles on the bottom of the trench using growth conditions including a partial pressure of precursor gas greater than the transition partial pressure at which carbon nanotube growth transitions from a parallel carbon nanotube growth mode to a cross-linked carbon nanotube growth mode.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: April 5, 2016
    Assignee: Applied Materials, Inc.
    Inventors: Pravin K. Narwankar, Joe Griffith Cruz, Arvind Sundarrajan, Murali Narasimhan, Subbalakshmi Sreekala, Victor Pushparaj
  • Publication number: 20150311061
    Abstract: Methods and apparatus for cleaning substrate surfaces are provided herein. In some embodiments, a method of cleaning a surface of a substrate may include providing a hydrogen containing gas to a first chamber having a plurality of filaments disposed therein; flowing a current through the plurality of filaments to raise a temperature of the plurality of filaments to a process temperature sufficient to decompose at least some of the hydrogen containing gas; and cleaning the surface of the substrate by exposing the substrate to hydrogen atoms formed from the decomposed hydrogen containing gas for a period of time.
    Type: Application
    Filed: July 7, 2015
    Publication date: October 29, 2015
    Inventors: JOE GRIFFITH CRUZ, JEONGWON PARK, PRAVIN K. NARWANKAR, NATE SI NGUYEN, HANH NGUYEN, TO CHAN, JINGJING XU
  • Patent number: 9111980
    Abstract: Apparatus for the removal of exhaust gases are provided herein. In some embodiments, an apparatus may include a carrier for supporting one or more substrates in a substrate processing tool, the carrier having a first exhaust outlet, and an exhaust assembly including a first inlet disposed proximate the carrier to receive process exhaust from the first exhaust outlet of the carrier, a second inlet to receive a cleaning gas, and an outlet to remove the process exhaust and the cleaning gas.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: August 18, 2015
    Assignee: APPLIED MATERIALS, INC.
    Inventors: David K. Carlson, Michael R. Rice, Kartik B. Shah, Kashif Maqsood, Pravin K. Narwankar
  • Patent number: 8921235
    Abstract: A method of forming and controlling air gaps between adjacent raised features on a substrate includes forming a silicon-containing film in a bottom region between the adjacent raised features using a flowable deposition process. The method also includes forming carbon-containing material on top of the silicon-containing film and forming a second film over the carbon-containing material using a flowable deposition process. The second film fills an upper region between the adjacent raised features. The method also includes curing the materials at an elevated temperature for a period of time to form the air gaps between the adjacent raised features. The thickness and number layers of films can be used to control the thickness, vertical position and number of air gaps.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: December 30, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Kiran V. Thadani, Jingjing Xu, Abhijit Basu Mallick, Joe Griffith Cruz, Nitin K. Ingle, Pravin K. Narwankar
  • Publication number: 20140248754
    Abstract: A method of forming and controlling air gaps between adjacent raised features on a substrate includes forming a silicon-containing film in a bottom region between the adjacent raised features using a flowable deposition process. The method also includes forming carbon-containing material on top of the silicon-containing film and forming a second film over the carbon-containing material using a flowable deposition process. The second film fills an upper region between the adjacent raised features. The method also includes curing the materials at an elevated temperature for a period of time to form the air gaps between the adjacent raised features. The thickness and number layers of films can be used to control the thickness, vertical position and number of air gaps.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 4, 2014
    Inventors: Kiran V. Thadani, Jingjing Xu, Abhijit Basu Mallick, Joe Griffith Cruz, Nitin K. Ingle, Pravin K. Narwankar