Patents by Inventor Preetam Charan Anand Tadeparthy

Preetam Charan Anand Tadeparthy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11973423
    Abstract: A system includes a load and a switching converter coupled to the load. The switching converter includes at least one switching module and an output inductor coupled to a switch node of each switching module. The switching converter also includes a controller coupled to each switching module, where the controller is configured to adjust a pulse clock rate and a switch on-time for each switching module. The controller comprises a pulse truncation circuit configured to detect a voltage overshoot condition and to truncate an active switch on-time pulse in response to the detected voltage overshoot condition.
    Type: Grant
    Filed: April 23, 2021
    Date of Patent: April 30, 2024
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Kuang-Yao Cheng, Muthusubramanian Venkateswaran, Dattatreya Baragur Suryanarayana, Preetam Charan Anand Tadeparthy
  • Patent number: 11955879
    Abstract: In described examples, a controller includes a converter. The converter generates a first signal responsive to an input signal. A summing block is coupled to the converter. The summing block receives the first signal and generates a second signal. A limiter is coupled to the summing block and generates a third signal responsive to the second signal and a code signal. A logic block generates a target signal responsive to the third signal. The third signal transitions to an intermediate level at a first slew rate and the third signal transitions from the intermediate level to the target signal at a second slew rate.
    Type: Grant
    Filed: December 30, 2020
    Date of Patent: April 9, 2024
    Assignee: Texas Instruments Incorporated
    Inventors: Venkatesh Wadeyar, Vikas Lakhanpal, Preetam Charan Anand Tadeparthy
  • Publication number: 20240113623
    Abstract: A controller includes: a pulse-width modulation (PWM) circuit; a control loop; and a reference voltage controller. The control loop has: a feedback input adapted to be coupled to an output voltage of a power stage; a control loop output coupled to a PWM control input; and an operational amplifier with a first feedback input, a first reference input, and an amplifier output, the first feedback input connected to the feedback input, and the amplifier output coupled to the PWM control input. The reference voltage controller has a reference voltage output coupled to the first reference input, the reference voltage controller configured to adjust a reference voltage provided to the reference voltage output responsive to a dynamic error estimate based on error in the operational amplifier.
    Type: Application
    Filed: December 14, 2023
    Publication date: April 4, 2024
    Inventors: Bikash Kumar PRADHAN, Preetam Charan Anand TADEPARTHY, Muthusubramanian VENKATESWARAN, Venkatesh WADEYAR, Siddaram MATHAPATHI
  • Patent number: 11949320
    Abstract: A device includes a current mirror, a switch, first and second current paths, first and second buffers, a variable resistor, a temperature-sensing circuit, and a controller. The first current path is coupled between the current mirror's input and the switch. The switch switches between ground and a transistor based on a control signal. The second current path is coupled between a first current mirror output and ground. The first buffer is coupled to a second current mirror output. The second buffer is coupled to the variable resistor, which is coupled to the first buffer. The temperature-sensing circuit provides a device temperature to the controller, which is coupled to a first buffer output and determines a first adjustment to the first and second current paths and a second adjustment to the variable resistor based on the device temperature.
    Type: Grant
    Filed: February 23, 2022
    Date of Patent: April 2, 2024
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Vishnuvardhan Reddy Jaladanki, Preetam Charan Anand Tadeparthy, Scott Ragona, Rengang Chen, Evan Michael Reutzel, Bhaskar Ramachandran
  • Publication number: 20240039402
    Abstract: In some examples, a circuit includes a state machine. The state machine is configured to operate in a first state in which the state machine gates a pulse width modulation (PWM) signal provided for control of a power converter according to a first signal provided by a voltage control loop. The state machine is configured to operate in a second state in which the state machine gates the PWM signal according to a second signal provided by a current limit comparator. The state machine is configured to transition from the first state to the second state responsive to the second signal being asserted after the first signal is asserted in a switching cycle of the power converter. The state machine is configured to transition from the current state to the first state responsive to the first signal being asserted after the second signal in a switching cycle of the power converter.
    Type: Application
    Filed: October 3, 2023
    Publication date: February 1, 2024
    Inventors: Naman Bafna, Muthusubramanian Venkateswaran, Mayank Jain, Vikram Gakhar, Vikas Lakhanpal, Preetam Charan Anand Tadeparthy, Pamidi Ramasiddaiah
  • Patent number: 11888393
    Abstract: A multiphase controller includes an integrator enable terminal, a pulse width modulator, an error integrator, an open drain driver, and an integrator enable circuit. The integrator enable terminal is adapted to be coupled to the integrator enable terminal of a different instance of the multiphase controller. The pulse width modulator is configured to modulate a power stage. The error integrator is configured to control the pulse width modulator. The open drain driver is coupled to the integrator enable circuit. The integrator enable circuit is coupled to the pulse width modulator, the error integrator, the open drain driver, and the integrator enable terminal. The integrator enable circuit is configured to activate the open drain driver responsive to generation of a power stage control pulse by the pulse width modulator, and activate the error integrator responsive to a logic low signal at the integrator enable terminal.
    Type: Grant
    Filed: November 30, 2021
    Date of Patent: January 30, 2024
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Muthusubramanian Venkateswaran, Rohit Narula, Preetam Charan Anand Tadeparthy, Matthew John Ascher Schurmann, Rajesh Venugopal
  • Patent number: 11881774
    Abstract: A controller includes: a pulse-width modulation (PWM) circuit; a control loop; and a reference voltage controller. The control loop has: a feedback input adapted to be coupled to an output voltage of a power stage; a control loop output coupled to a PWM control input; and an operational amplifier with a first feedback input, a first reference input, and an amplifier output, the first feedback input connected to the feedback input, and the amplifier output coupled to the PWM control input. The reference voltage controller has a reference voltage output coupled to the first reference input, the reference voltage controller configured to adjust a reference voltage provided to the reference voltage output responsive to a dynamic error estimate based on error in the operational amplifier.
    Type: Grant
    Filed: March 12, 2021
    Date of Patent: January 23, 2024
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Bikash Kumar Pradhan, Preetam Charan Anand Tadeparthy, Muthusubramanian Venkateswaran, Venkatesh Wadeyar, Siddaram Mathapathi
  • Publication number: 20230378869
    Abstract: In an example, a method includes storing a pending PWM pulse for a switching voltage regulator. The method also includes determining a switching voltage regulator is operating in a current limit mode, where an inductor current is above a current limit threshold. The method includes providing a predetermined number of PWM pulses in the current limit mode. The method also includes, responsive to providing the predetermined number of PWM pulses, ceasing storage of pending PWM pulses for the switching voltage regulator.
    Type: Application
    Filed: August 3, 2023
    Publication date: November 23, 2023
    Inventors: Naman BAFNA, Preetam Charan Anand TADEPARTHY, Ammineni BALAJI, Sreelakshmi SURESH, Mayank JAIN
  • Patent number: 11811326
    Abstract: An example circuit includes a loop controller having current phase inputs, a feedback input, a control loop output and a transient event output. The feedback input is adapted to be coupled to an output terminal of a multi-phase power stage. A PWM circuit has a blanking input, a control input and a PWM output, the control input coupled to the control loop output. A phase management circuit has a transient detect input, a PWM input, a blanking output and phase outputs. The transient detect input is coupled to the transient event output. The PWM input is coupled to the PWM output and the blanking output is coupled to the blanking input. Each of the phase outputs is adapted to be coupled to a respective phase of the multi-phase power stage. The phase management circuit is configured to provide a blanking control signal representative of a variable blanking time.
    Type: Grant
    Filed: February 28, 2022
    Date of Patent: November 7, 2023
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Naman Bafna, Cheng Wei Chen, Preetam Charan Anand Tadeparthy, Sreelakshmi Suresh, Ammineni Balaji
  • Patent number: 11811314
    Abstract: In some examples, a circuit includes a state machine. The state machine is configured to operate in a first state in which the state machine gates a pulse width modulation (PWM) signal provided for control of a power converter according to a first signal provided by a voltage control loop. The state machine is configured to operate in a second state in which the state machine gates the PWM signal according to a second signal provided by a current limit comparator. The state machine is configured to transition from the first state to the second state responsive to the second signal being asserted after the first signal is asserted in a switching cycle of the power converter. The state machine is configured to transition from the current state to the first state responsive to the first signal being asserted after the second signal in a switching cycle of the power converter.
    Type: Grant
    Filed: December 30, 2020
    Date of Patent: November 7, 2023
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Naman Bafna, Muthusubramanian Venkateswaran, Mayank Jain, Vikram Gakhar, Vikas Lakhanpal, Preetam Charan Anand Tadeparthy, Pamidi Ramasiddaiah
  • Patent number: 11799427
    Abstract: An amplifier includes a first stage and a second stage. The first stage is configured to amplify a received signal. The second stage is coupled to the first stage. The second stage includes a source follower and a compensation network. The source follower includes an input and an output. The compensation network is coupled to the input of the source follower and the output of the source follower. The compensation network is configured to modify a magnitude and phase response of the first stage based on a load capacitance coupled to the output of the source follower.
    Type: Grant
    Filed: October 29, 2021
    Date of Patent: October 24, 2023
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Vishnuvardhan Reddy Jaladanki, Preetam Charan Anand Tadeparthy
  • Patent number: 11757358
    Abstract: In an example, a method includes storing a pending PWM pulse for a switching voltage regulator. The method also includes determining a switching voltage regulator is operating in a current limit mode, where an inductor current is above a current limit threshold. The method includes providing a predetermined number of PWM pulses in the current limit mode. The method also includes, responsive to providing the predetermined number of PWM pulses, ceasing storage of pending PWM pulses for the switching voltage regulator.
    Type: Grant
    Filed: September 30, 2021
    Date of Patent: September 12, 2023
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Naman Bafna, Preetam Charan Anand Tadeparthy, Ammineni Balaji, Sreelakshmi Suresh, Mayank Jain
  • Patent number: 11757351
    Abstract: Described embodiments include a voltage regulator circuit comprising a first comparator having a first comparator input coupled to a waveform input source, a second comparator input coupled to an output voltage terminal and a first comparator output. There is a second comparator having third and fourth comparator inputs and a second comparator output, the third comparator input coupled to a voltage source configured to provide a voltage representing a current limit, and the fourth comparator input coupled to the output voltage terminal. There is also a state machine having a first state machine input coupled to the first comparator output, a second state machine input coupled to the second comparator output and a state machine output, wherein a state of the state machine is determined by the first and second comparator outputs, and the state machine output provides a PWM signal responsive to the state of the state machine.
    Type: Grant
    Filed: July 30, 2021
    Date of Patent: September 12, 2023
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Ammineni Balaji, Preetam Charan Anand Tadeparthy, Naman Bafna, Sreelakshmi Suresh, Cheng Wei Chen
  • Patent number: 11720159
    Abstract: In described examples, a voltage regulator includes a processor. A register bank is coupled to the processor. A logic block is coupled to the processor and to the register bank. The logic block receives frames. The processor programs the logic block and the register bank based on at least one of the frames.
    Type: Grant
    Filed: June 30, 2020
    Date of Patent: August 8, 2023
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Venkatesh Wadeyar, Vikas Lakhanpal, Preetam Charan Anand Tadeparthy
  • Patent number: 11711016
    Abstract: In described examples of a system having a proportional-integral control module, an error signal is produced that is indicative of a difference between a reference signal and an output signal. An integral control signal is produced by integrating the error signal using an integrator time constant value. During a steady state condition, a first integrator time constant value is used. When an undershoot in the output signal is detected, the integrator time constant value is increased to a second time constant value that is larger than the first integrator time constant value during the undershoot condition. The integrator time constant value is reduced to a third integrator time constant value that is less than the first integrator time constant value during a period following the undershoot condition.
    Type: Grant
    Filed: September 30, 2021
    Date of Patent: July 25, 2023
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Naman Bafna, Preetam Charan Anand Tadeparthy, Ammineni Balaji, Sreelakshmi Suresh
  • Patent number: 11682900
    Abstract: A system includes a first power stage circuit having a first PWM input, a first voltage input and a first power output. The first power stage circuit is configured to provide a first current at the first power output responsive to a PWM signal at the first PWM input, and configured to receive a voltage at the first voltage input. The system includes a second power stage circuit having a second PWM input, a second voltage input and a second power output. The second voltage input is coupled to the first voltage input, and the second power stage circuit is configured to provide a second current at the second power output responsive to the PWM signal at the second PWM input. The second power stage circuit is configured to receive the voltage at the second voltage input, the voltage representing an average of the first current and the second current.
    Type: Grant
    Filed: June 4, 2021
    Date of Patent: June 20, 2023
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Rajesh Venugopal, Matthew John Ascher Schurmann, Preetam Charan Anand Tadeparthy, Rengang Chen
  • Publication number: 20230170796
    Abstract: A multiphase controller includes an integrator enable terminal, a pulse width modulator, an error integrator, an open drain driver, and an integrator enable circuit. The integrator enable terminal is adapted to be coupled to the integrator enable terminal of a different instance of the multiphase controller. The pulse width modulator is configured to modulate a power stage. The error integrator is configured to control the pulse width modulator. The open drain driver is coupled to the integrator enable circuit. The integrator enable circuit is coupled to the pulse width modulator, the error integrator, the open drain driver, and the integrator enable terminal. The integrator enable circuit is configured to activate the open drain driver responsive to generation of a power stage control pulse by the pulse width modulator, and activate the error integrator responsive to a logic low signal at the integrator enable terminal.
    Type: Application
    Filed: November 30, 2021
    Publication date: June 1, 2023
    Inventors: Muthusubramanian VENKATESWARAN, Rohit NARULA, Preetam Charan Anand TADEPARTHY, Matthew John Ascher SCHURMANN, Rajesh VENUGOPAL
  • Publication number: 20230130783
    Abstract: An example circuit includes a loop controller having current phase inputs, a feedback input, a control loop output and a transient event output. The feedback input is adapted to be coupled to an output terminal of a multi-phase power stage. A PWM circuit has a blanking input, a control input and a PWM output, the control input coupled to the control loop output. A phase management circuit has a transient detect input, a PWM input, a blanking output and phase outputs. The transient detect input is coupled to the transient event output. The PWM input is coupled to the PWM output and the blanking output is coupled to the blanking input. Each of the phase outputs is adapted to be coupled to a respective phase of the multi-phase power stage. The phase management circuit is configured to provide a blanking control signal representative of a variable blanking time.
    Type: Application
    Filed: February 28, 2022
    Publication date: April 27, 2023
    Inventors: Naman BAFNA, Cheng Wei Chen, Preetam Charan Anand Tadeparthy, Sreelakshmi Suresh, Ammineni Balaji Balaji
  • Publication number: 20230079601
    Abstract: In described examples of a system having a proportional-integral control module, an error signal is produced that is indicative of a difference between a reference signal and an output signal. An integral control signal is produced by integrating the error signal using an integrator time constant value. During a steady state condition, a first integrator time constant value is used. When an undershoot in the output signal is detected, the integrator time constant value is increased to a second time constant value that is larger than the first integrator time constant value during the undershoot condition. The integrator time constant value is reduced to a third integrator time constant value that is less than the first integrator time constant value during a period following the undershoot condition.
    Type: Application
    Filed: September 30, 2021
    Publication date: March 16, 2023
    Inventors: Naman Bafna, Preetam Charan Anand Tadeparthy, Ammineni Balaji, Sreelakshmi Suresh
  • Patent number: 11595033
    Abstract: Described embodiments include a comparator circuit comprising an input voltage terminal, a reference voltage terminal, and a rising edge decode circuit having inputs coupled to the input voltage terminal and the reference voltage terminal. The rising edge output provides a rising edge decode signal indicating the input signal transitioned from being smaller than the reference voltage signal to being larger than the reference voltage signal. A falling edge decode circuit has inputs coupled to the input voltage terminal and the reference voltage terminal, and a falling edge output providing a falling edge decode signal indicating that the input signal transitioned from being larger than the reference voltage signal to being smaller than the reference voltage signal. Also, a decode logic circuit provides a comparator output in response to the rising edge decode signal and the falling edge decode signal.
    Type: Grant
    Filed: October 29, 2021
    Date of Patent: February 28, 2023
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Vishnuvardhan Reddy Jaladanki, Preetam Charan Anand Tadeparthy