Patents by Inventor Preeti Kamakoti

Preeti Kamakoti has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210046462
    Abstract: A method of producing a acid/metal bifunctional catalyst may include: mixing an acid catalyst, a metal catalyst, and a fluid to produce a slurry, wherein the acid catalyst is present at 50 wt % or less relative to a total catalyst weight in the slurry; heating the slurry; producing a powder from the slurry; and calcining the powder to produce the acid/metal bifunctional catalyst. Such acid/metal bifunctional catalyst would be useful in the direct conversion of syngas to dimethyl ether as well as other reactions.
    Type: Application
    Filed: August 13, 2020
    Publication date: February 18, 2021
    Inventors: Chuansheng Bai, Majosefina Cunningham, Jihad M. Daaka, Preeti Kamakoti, Aruna Ramkrishnan, Anjaneya S. Kovvali, Anita S. Lee
  • Patent number: 10919830
    Abstract: Systems and methods are provided for conversion of gas phase reactants including CO and H2 to C2+ products using multiple catalysts in a single reactor while reducing or minimizing deactivation of the catalysts. Separate catalysts can be used that correspond to a first catalyst, such as a catalyst for synthesis of methanol from synthesis gas, and a second catalyst, such as a catalyst for conversion of methanol to a desired C2+ product. The separate catalysts can be loaded into the reactor in distinct layers that are separated by spacer layers. The spacer layers can correspond to relatively inert particles, such as silica particles. Optionally, the spacer layer can include an adsorbent, such as boron supported on alumina or boron carbide particles. The adsorbent can be suitable for selective adsorption of the one or more reaction products (such as one or more reaction by-products), to allow for further reduction or minimization of the deactivation of the conversion catalysts.
    Type: Grant
    Filed: January 9, 2020
    Date of Patent: February 16, 2021
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Jihad M. Dakka, Michael J. Sikorsky, Aruna Ramkrishnan, Chuansheng Bai, Anita S. Lee, Preeti Kamakoti, Anjaneya S. Kovvali, Jenna L. Walp
  • Publication number: 20200338495
    Abstract: Methods of designing zeolite materials for adsorption of CO2. Zeolite materials and processes for CO2 adsorption using zeolite materials.
    Type: Application
    Filed: July 10, 2020
    Publication date: October 29, 2020
    Inventors: Peter I. Ravikovitch, David Sholl, Charanjit Paur, Karl G. Strohmaier, Hanjun Fang, Ambarish R. Kulkarni, Rohan V. Awati, Preeti Kamakoti
  • Patent number: 10744449
    Abstract: Methods of designing zeolite materials for adsorption of CO2. Zeolite materials and processes for CO2 adsorption using zeolite materials.
    Type: Grant
    Filed: November 15, 2016
    Date of Patent: August 18, 2020
    Assignees: Exxonmobil Upstream Research Company, Georgia Tech Research Corporation
    Inventors: Peter I Ravikovitch, David Sholl, Charanjit Paur, Karl G. Strohmaier, Hanjun Fang, Ambarish R. Kulkarni, Rohan V. Awati, Preeti Kamakoti
  • Publication number: 20200231525
    Abstract: Systems and methods are provided for conversion of gas phase reactants including CO and H2 to C2+ products using multiple catalysts in a single reactor while reducing or minimizing deactivation of the catalysts. Separate catalysts can be used that correspond to a first catalyst, such as a catalyst for synthesis of methanol from synthesis gas, and a second catalyst, such as a catalyst for conversion of methanol to a desired C2+ product. The separate catalysts can be loaded into the reactor in distinct layers that are separated by spacer layers. The spacer layers can correspond to relatively inert particles, such as silica particles. Optionally, the spacer layer can include an adsorbent, such as boron supported on alumina or boron carbide particles. The adsorbent can be suitable for selective adsorption of the one or more reaction products (such as one or more reaction by-products), to allow for further reduction or minimization of the deactivation of the conversion catalysts.
    Type: Application
    Filed: January 9, 2020
    Publication date: July 23, 2020
    Inventors: Jihad M. Dakka, Michael J. Sikorsky, Aruna Ramkrishnan, Chuansheng Bai, Anita S. Lee, Preeti Kamakoti, Anjaneya S. Kovvali, Jenna L. Walp
  • Patent number: 10661262
    Abstract: Hydrogenation catalysts for aromatic hydrogenation including an organosilica material support, which is a polymer comprising independent units of a monomer of Formula [Z1OZ2OSiCH2]3 (I), wherein each Z1 and Z2 independently represent a hydrogen atom, a C1-C4 alkyl group or a bond to a silicon atom of another monomer; and at least one catalyst metal are provided herein. Methods of making the hydrogenation catalysts and processes of using, e.g., aromatic hydrogenation, the hydrogenation catalyst are also provided herein.
    Type: Grant
    Filed: July 10, 2018
    Date of Patent: May 26, 2020
    Assignee: ExxonMobil Research & Engineering Company
    Inventors: Paul Podsiadlo, Quanchang Li, David Charles Calabro, Jean Willem Lodewijk Beeckman, Lei Zhang, Kiara M. Benitez, Matthew Scott Ide, Stephen John McCarthy, Mobae Afeworki, Simon Christopher Weston, Preeti Kamakoti, Matu J. Shah, Wenyih Frank Lai, Meghan Kochersperger, David A. Griffin, Ivy D. Johnson
  • Publication number: 20200062604
    Abstract: Processes are provided for preparing molecular sieves for use as catalysts. The process involves preparing a synthesis mixture for the molecular sieve wherein the synthesis mixture includes a morphology modifier which may be selected from cationic surfactants having a single quaternary ammonium group comprising at least one hydrocarbyl group having at least 12 carbon atoms, nonionic surfactants, anionic surfactants, sugars, and combinations thereof.
    Type: Application
    Filed: August 20, 2019
    Publication date: February 27, 2020
    Inventors: Preeti Kamakoti, Scott J. Weigel, Karl G. Strohmaier, Helge Jaensch, Marc H. Anthonis, Martine Dictus, Brita Engels, Darryl D. Lacy, Sina Sartipi
  • Publication number: 20200063042
    Abstract: Methods are provided for using a molecular sieve catalyst for dewaxing formed using a synthesis mixture comprising a morphology modifier. The catalyst may be used, for example, for production of a lubricant base stock. For example, ZSM-48 crystals formed using the morphology modifier (and/or formulated catalysts made using such crystals) can have an increased activity and/or can provide an improved yield during catalytic dewaxing of lubricant base stocks.
    Type: Application
    Filed: August 14, 2019
    Publication date: February 27, 2020
    Inventors: Preeti Kamakoti, Scott J. Weigel, Stephen J. McCarthy, Shifang L. Luo, Sina Sartipi, Martine Dictus, Marc H. Anthonis, Helge Jaensch
  • Publication number: 20200061592
    Abstract: Processes are provided for preparing molecular sieves. The process involves preparing a synthesis mixture for the molecular sieve wherein the synthesis mixture includes a morphology modifier L selected from the group consisting of nonionic surfactants, anionic surfactants, sugars and combinations thereof.
    Type: Application
    Filed: August 20, 2019
    Publication date: February 27, 2020
    Inventors: Preeti Kamakoti, Scott J. Weigel, Karl G. Strohmaier, Helge Jaensch, Marc H. Anthonis, Martine Dictus, Brita Engels, Darryl D. Lacy, Sina Sartipi
  • Publication number: 20200061593
    Abstract: Processes are provided for preparing molecular sieves of framework structure MEI, TON, MRE, MWW, MFS, MOR, FAU, EMT, or MSE. The process involves preparing a synthesis mixture for the molecular sieve wherein the synthesis mixture includes a morphology modifier L selected from the group consisting of cationic surfactants having a quaternary ammonium group comprising at least one hydrocarbyl group having at least 12 carbon atoms, nonionic surfactants, anionic surfactants, sugars and combinations thereof.
    Type: Application
    Filed: August 20, 2019
    Publication date: February 27, 2020
    Inventors: Preeti Kamakoti, Scott J. Weigel, Karl G. Strohmaier, Helge Jaensch, Marc H. Anthonis, Martine Dictus, Brita Engels, Darryl D. Lacy, Sina Sartipi, Brandon J. O'Neill
  • Patent number: 10207249
    Abstract: Organosilica materials, which are a polymer of at least one independent monomer of Formula [Z1OZ2OSiCH2]3 (I), wherein Z1 and Z2 each independently represent a hydrogen atom, a C1-C4 alkyl group or a bond to a silicon atom of another monomer and at least one other monomer is provided herein. Methods of preparing and processes of using the organosilica materials, e.g., for gas separation, color removal etc., are also provided herein.
    Type: Grant
    Filed: December 11, 2015
    Date of Patent: February 19, 2019
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Quanchang Li, Preeti Kamakoti, David Charles Calabro, Mary Kathryn Lee, Stephen M. Cundy, Kanmi Mao, Matu J. Shah, Dennis George Peiffer, Daniel P. Leta
  • Patent number: 10160708
    Abstract: Integrated methods and systems are disclosed for the production of dimethyl ether. The method may include reforming natural gas to syngas in a first reactor; contacting the syngas produced in the first reactor with a catalyst system in a second reactor to produce dimethyl ether and carbon dioxide; and supplying steam as a cofeed to at least one of the first reactor and the second reactor in an amount sufficient to achieve a Mm value of 1.4 to 1.8 or to improve the hydrocarbon or oxygenate selectivity.
    Type: Grant
    Filed: March 10, 2017
    Date of Patent: December 25, 2018
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Anita S. Lee, Jihad M. Dakka, Arun K. Sharma, Michel Daage, Preeti Kamakoti, Ronald Suryo, Chuansheng Bai, J. Timothy Cullinane
  • Publication number: 20180318790
    Abstract: Hydrogenation catalysts for aromatic hydrogenation including an organosilica material support, which is a polymer comprising independent units of a monomer of Formula [Z1OZ2OSiCH2]3 (I), wherein each Z1 and Z2 independently represent a hydrogen atom, a C1-C4 alkyl group or a bond to a silicon atom of another monomer; and at least one catalyst metal are provided herein. Methods of making the hydrogenation catalysts and processes of using, e.g., aromatic hydrogenation, the hydrogenation catalyst are also provided herein.
    Type: Application
    Filed: July 10, 2018
    Publication date: November 8, 2018
    Inventors: Paul Podsiadlo, Quanchang Li, David Charles Calabro, Jean Willem Lodewijk Beeckman, Lei Zhang, Kiara M. Benitez, Matthew Scott Ide, Stephen John McCarthy, Mobae Afeworki, Simon Christopher Weston, Preeti Kamakoti, Matu J. Shah, Wenyih Frank Lai, Meghan Kochersperger, David A. Griffin, Ivy D. Johnson
  • Patent number: 10047304
    Abstract: Hydrogenation catalysts for aromatic hydrogenation including an organosilica material support, which is a polymer comprising independent units of a monomer of Formula [Z1OZ2OSiCH2]3 (I), wherein each Z1 and Z2 independently represent a hydrogen atom, a C1-C4 alkyl group or a bond to a silicon atom of another monomer; and at least one catalyst metal are provided herein. Methods of making the hydrogenation catalysts and processes of using, e.g., aromatic hydrogenation, the hydrogenation catalyst are also provided herein.
    Type: Grant
    Filed: December 11, 2015
    Date of Patent: August 14, 2018
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Paul Podsiadlo, Quanchang Li, David Charles Calabro, Jean Willem Lodewijk Beeckman, Lei Zhang, Kiara M. Benitez, Matthew Scott Ide, Stephen John McCarthy, Mobae Afeworki, Simon Christopher Weston, Preeti Kamakoti, Matu J. Shah, Wenyih Frank Lai, Meghan Nines, David A. Griffin, Ivy D. Johnson
  • Patent number: 10035096
    Abstract: The present application is directed to a method and system for preparing gaseous utility streams from gaseous process streams, particularly, removing oil contamination from such streams prior to use in a dry gas seal. The methods and systems may include at least one kinetic swing adsorption process including pressure swing adsorption, temperature swing adsorption, calcination, and inert purge processes to treat gaseous streams for use in dry gas seals of rotating equipment such as compressors, turbines and pumps and other utilities. The adsorbent materials used include a high surface area solid structured microporous and mesoporous materials.
    Type: Grant
    Filed: July 23, 2015
    Date of Patent: July 31, 2018
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Harry W. Deckman, Preeti Kamakoti, Peter I. Ravikovitch, Bruce T. Kelley, P. Scott Northrop, Peter C. Rasmussen, Paul L. Tanaka, Martin N. Webster, Wieslaw J. Roth, Edward W. Corcoran, Jr.
  • Publication number: 20170297986
    Abstract: Integrated methods and systems are disclosed for the production of dimethyl ether. The method may include reforming natural gas to syngas in a first reactor; contacting the syngas produced in the first reactor with a catalyst system in a second reactor to produce dimethyl ether and carbon dioxide; and supplying steam as a cofeed to at least one of the first reactor and the second reactor in an amount sufficient to achieve a Mm value of 1.4 to 1.8 or to improve the hydrocarbon or oxygenate selectivity.
    Type: Application
    Filed: March 10, 2017
    Publication date: October 19, 2017
    Inventors: Anita S. LEE, Jihad M. DAKKA, Arun K. SHARMA, Michel DAAGE, Preeti KAMAKOTI, Ronald SURYO, Chuansheng BAI, J. Timothy CULLINANE
  • Patent number: 9737846
    Abstract: Adsorbent materials comprising a core, for example CHA, and at least one coating, for example DDR, are provided herein. Adsorbent contactors and gas separation processes using the adsorbent materials are also provided herein.
    Type: Grant
    Filed: December 9, 2015
    Date of Patent: August 22, 2017
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Barbara Carstensen, Daniel P. Leta, Preeti Kamakoti, Peter Ravikovitch, Joshua Varon, Tilman Wolfram Beutel, Karl Gottlieb Strohmaier, Ivy Dawn Johnson, Harry W. Deckman, Frank Cheng-Yu Wang, Charanjit Singh Paur
  • Publication number: 20170136405
    Abstract: Methods of designing zeolite materials for adsorption of CO2. Zeolite materials and processes for CO2 adsorption using zeolite materials.
    Type: Application
    Filed: November 15, 2016
    Publication date: May 18, 2017
    Inventors: Peter I. Ravikovitch, David Sholl, Charanjit Paur, Karl G. Strohmaier, Hanjun Fang, Ambarish R. Kulkarni, Rohan V. Awati, Preeti Kamakoti
  • Patent number: 9644134
    Abstract: A method for recovering oil from a subterranean, hydrocarbon-bearing formation includes at least one injection well and injecting a carrier fluid including a diverting agent into a high permeability pathway within the formation. An activating fluid is injected into the high permeability pathway within the formation, resulting in the precipitation or swelling of the diverting agent. The permeability of the high permeability pathway is decreased within the formation containing the diverting agent to a permeability less than the permeability of the adjacent areas of the formation. A mineralization fluid may be injected that is oversaturated or becomes oversaturated upon interacting with the acid gas that causes mineral precipitation to seal off high-permeability pathways.
    Type: Grant
    Filed: January 29, 2014
    Date of Patent: May 9, 2017
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Gary F. Teletzke, Jasper L. Dickson, Preeti Kamakoti, Stuart R. Keller, William B. Maze, Peter G. Smith, Jr., Yitian Xiao
  • Publication number: 20160175759
    Abstract: Adsorbent materials comprising a core, for example CHA, and at least one coating, for example DDR, are provided herein. Adsorbent contactors and gas separation processes using the adsorbent materials are also provided herein.
    Type: Application
    Filed: December 9, 2015
    Publication date: June 23, 2016
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Barbara Carstensen, Daniel P. LETA, Preeti KAMAKOTI, Peter RAVIKOVITCH, Joshua VARON, Tilman Wolfram BEUTEL, Karl Gottlieb STROHMAIER, Ivy Dawn JOHNSON, Harry W. DECKMAN, Frank Cheng-Yu WANG, Charanjit Singh PAUR