Patents by Inventor Pushkar Tandon

Pushkar Tandon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220043201
    Abstract: A coupled-core multicore optical fiber has a plurality of cores that are doped with alkali metals or chlorine to achieve low attenuation and a large effective area. The cores may be embedded in a common cladding region that may be fluorine doped. The cores may also be doped with chlorine, either with the alkali metals described above or without the alkali metals.
    Type: Application
    Filed: July 28, 2021
    Publication date: February 10, 2022
    Inventors: Scott Robertson Bickham, Dana Craig Bookbinder, Ming-Jun Li, Snigdharaj Kumar Mishra, Pushkar Tandon
  • Patent number: 11237321
    Abstract: An optical fiber having a core comprising silica and greater than 1.5 wt % chlorine and less than 0.5 wt % F, said core having a refractive index ?1MAX, and an inner cladding region having refractive index ?2MIN surrounding the core, where ?1MAX>?2MIN.
    Type: Grant
    Filed: August 19, 2019
    Date of Patent: February 1, 2022
    Assignee: Corning Incorporated
    Inventors: George Edward Berkey, Dana Craig Bookbinder, Ming-Jun Li, Pushkar Tandon
  • Publication number: 20220026627
    Abstract: An optical fiber is provided that includes a core region, a cladding region having a radius less than about 62.5 microns; a polymer coating comprising a high-modulus layer and a low-modulus layer, wherein a thickness of the low-modulus inner coating layer is in a range of 4 microns to 20 microns, the modulus of the low-modulus inner coating layer is less than or equal to about 0.35 MPa, a thickness of the high-modulus coating layer is in a range of 4 microns to 20 microns, the modulus of the high-modulus inner coating layer is greater than or equal to about 1.6 GPa, and wherein a puncture resistance of the optical fiber is greater than 20 g, and wherein a microbend attenuation penalty of the optical fiber is less than 0.
    Type: Application
    Filed: July 21, 2021
    Publication date: January 27, 2022
    Inventors: Scott Robertson Bickham, Matthew Ryan Drake, Shandon Dee Hart, Ming-Jun Li, Joseph Edward McCarthy, Weijun Niu, Pushkar Tandon
  • Publication number: 20220026628
    Abstract: Multicore optical fibers with low bend loss, low cross-talk, and large mode field diameters In some embodiments a circular multicore optical fiber includes a glass matrix; at least 3 cores arranged within the glass matrix, wherein any two cores have a core center to core center spacing of less than 29 microns; and a plurality of trench layers positioned between a corresponding core and the glass matrix, each trench layer having an outer radius of less than or equal to 14 microns and a trench volume of greater than 50% ? micron2; wherein the optical fiber has a mode field diameter of greater than about 8.2 microns at 1310 nm, and wherein the optical fiber has an outer diameter of less than about 130 microns.
    Type: Application
    Filed: July 21, 2021
    Publication date: January 27, 2022
    Inventors: Kevin Wallace Bennett, Scott Robertson Bickham, Ming-Jun Li, Pushkar Tandon
  • Publication number: 20220026629
    Abstract: A multicore optical fiber comprises a common cladding and a plurality of core portions disposed in the common cladding. Each of the core portions includes a central axis, a core region extending from the central axis to a radius r1, the core region comprising a relative refractive index ?1, an inner cladding region extending from the radius r1 to a radius r2, the inner cladding region comprising a relative refractive index ?2, and a depressed cladding extending from the radius r2 to a radius r3, the depressed cladding region comprising a relative refractive index ?3 and a minimum relative refractive index ?3 min. The relative refractive indexes may satisfy ?1>?2>?3 min. The mode field diameter of each core portion may greater than or equal to 8.2 ?m and less than or equal to 9.5 ?m.
    Type: Application
    Filed: July 27, 2021
    Publication date: January 27, 2022
    Inventors: Pushkar Tandon, Snigdharaj Kumar Mishra
  • Publication number: 20220023792
    Abstract: A honeycomb body comprises a matrix of intersecting porous walls forming channels. Plugs are disposed in a percentage of the channels having the second hydraulic diameter, wherein the percentage of the channels of the second diameter having a plug is less than or equal to 15%. In some embodiments, some of the channels have a first hydraulic diameter and others have a second hydraulic diameter that is smaller than the first hydraulic diameter, and may be unplugged for plugged. The porous walls can further comprise a transverse thickness of the walls Tw less than or equal to 0.20 mm, a channel density CD greater than or equal to 62 channels per cm2, an average bulk porosity % P greater than or equal to 50%, and a median pore diameter d50 ranging from between 4.0 ?m and 30.0 ?m.
    Type: Application
    Filed: November 6, 2019
    Publication date: January 27, 2022
    Inventors: Douglas Munroe Beall, Pushkar Tandon
  • Publication number: 20220008858
    Abstract: A particulate filter having a honeycomb structure of a matrix of interconnected porous walls including inlet cells and outlet cells defining a plurality of inlet channels and outlet channels, respectively, wherein at least a portion of the outlet cells are larger than any of the inlet cells, and a cross-sectional shape of at least some of the outlet channels is rectangular. Honeycomb extrusion dies, honeycomb bodies, honeycomb structures, and methods of manufacture are described, as are other aspects.
    Type: Application
    Filed: September 22, 2021
    Publication date: January 13, 2022
    Inventors: Douglas Munroe Beall, Suhao He, Achim Karl-Erich Heibel, Kenneth Richard Miller, Pushkar Tandon, David John Thompson
  • Publication number: 20220011503
    Abstract: A single mode optical fiber is provided that includes a core region having an outer radius ri and a maximum relative refractive index ?1max. The single mode optical fiber further includes a cladding region surrounding the core region, the cladding region includes a depressed-index cladding region, a relative refractive index ?3 of the depressed-index cladding region increasing with increased radial position. The single mode optical fiber has a bend loss at 1550 nm for a 15 mm diameter mandrel of less than about 0.75 dB/turn, a bend loss at 1550 nm for a 20 mm diameter mandrel of less than about 0.2 dB/turn, and a bend loss at 1550 nm for a 30 mm diameter mandrel of less than 0.005 dB/turn. Additionally, the single mode optical fiber has a mode field diameter of 9.0 microns or greater at 1310 nm wavelength.
    Type: Application
    Filed: June 29, 2021
    Publication date: January 13, 2022
    Inventors: Ming-Jun Li, Pushkar Tandon
  • Publication number: 20220008907
    Abstract: A ceramic honeycomb body, suitable for use in exhaust gas processing, includes a honeycomb structure having a plurality of through-channels, a first portion of the plurality of through-channels have a first hydraulic diameter dh1, a second portion of the plurality of through-channels have a second hydraulic diameter that is smaller than the first hydraulic diameter dh1, the first hydraulic diameter dh1 is equal to or greater than 1.1 mm, and the first and second portions of through-channels, taken together, have a geometric surface area GSA greater than 2.9 mm?1. Diesel oxidation catalysts and methods of soot removal are also provided, as are other aspects.
    Type: Application
    Filed: November 6, 2019
    Publication date: January 13, 2022
    Inventors: Douglas Munroe Beall, Dana Craig Bookbinder, Achim Karl-Erich Heibel, Pushkar Tandon
  • Patent number: 11213781
    Abstract: A honeycomb body having intersecting porous walls which includes first through fourth cells, wherein the cells extend from inlet to outlet face and are plugged to define a repeating structural unit with three inlets and one outlet channel. Repeating structural unit includes a first channel including length L1, width W2, and area A1, a second channel including length L2, the width W2, and area A2, a third channel including the length L1, width W1, and area A3, and a fourth channel including the length L2, the width W1, and A4, wherein the first through third channels are inlets and the fourth channel is a rectangular outlet and at least one of W1?W2 and L1?L2, i.e. W1?W2, or L1?L2, or W1?W2 and L1?L2. Repeating structural unit has a quadrilateral outer perimeter. Particulate filters including the honeycomb body, honeycomb extrusion dies, and methods of manufacturing the honeycomb body are provided.
    Type: Grant
    Filed: January 29, 2021
    Date of Patent: January 4, 2022
    Assignee: Corning Incorporated
    Inventors: Douglas Munroe Beall, Dana Craig Bookbinder, Pushkar Tandon
  • Publication number: 20210405286
    Abstract: A single mode optical fiber is provided that includes a core region and a cladding region, the cladding region including a depressed-index cladding region, a first outer cladding region, and a second outer cladding region. The first outer cladding region has a lower relative refractive than the second outer cladding region. The single mode optical fiber has a bend loss at 1550 nm for a 15 mm diameter mandrel of less than about 0.75 dB/turn, has a bend loss at 1550 nm for a 20 mm diameter mandrel of less than about 0.2 dB/turn, and a bend loss at 1550 nm for a 30 mm diameter mandrel of less than about 0.005 dB/turn. Additionally, the single mode optical fiber has a mode field diameter of about 9.0 microns or greater at 1310 nm wavelength and a cable cutoff of less than or equal to about 1260 nm.
    Type: Application
    Filed: May 27, 2021
    Publication date: December 30, 2021
    Inventors: Ming-Jun Li, Pushkar Tandon
  • Publication number: 20210394168
    Abstract: A particulate filter having a porous ceramic honeycomb structure with a first end, a second end, and a plurality of walls having wall surfaces defining a plurality of inner channels. Filtration material deposits are disposed on one or more of the wall surfaces of the honeycomb body. The highly porous deposits provide durable high clean filtration efficiency with small impact on pressure drop through the filter.
    Type: Application
    Filed: September 7, 2021
    Publication date: December 23, 2021
    Inventors: Douglas Munroe Beall, Thorsten Rolf Boger, Dana Craig Bookbinder, Thomas Jean Glasson, Dale Robert Powers, Pushkar Tandon, Jianguo Wang, Huiqing Wu, Xinfeng Xing
  • Patent number: 11198635
    Abstract: Preparation of halogen-doped silica is described. The preparation includes doping silica with high halogen concentration and sintering halogen-doped silica to a closed-pore state in a gas-phase environment that has a low partial pressure of impermeable gases. Impermeable gases are difficult to remove from halogen-doped fiber preforms and lead to defects in optical fibers drawn from the preforms. A low partial pressure of impermeable gases in the sintering environment leads to a low concentration of impermeable gases and a low density of gas-phase voids in densified halogen-doped silica. Preforms with fewer defects result.
    Type: Grant
    Filed: August 1, 2019
    Date of Patent: December 14, 2021
    Assignee: Corning Incorporated
    Inventors: Dana Craig Bookbinder, Steven Bruce Dawes, Richard Michael Fiacco, Brian Lee Harper, Pushkar Tandon
  • Patent number: 11194107
    Abstract: The high-density FAU comprises a support substrate having a grooved front-end section that supports glass end sections of the small diameter low-attenuation optical fibers. A cover is disposed on the front-end section and secured thereto to hold the glass end sections in place. The substrate and the cover can be made of the same glass or glasses having about the same CTE. The glass end sections have a diameter d4 so that the pitch P2 of the fibers at the front end of the FAU can be equal to or greater than d4, wherein d4=2r4, with r4 being the radius of the glass end section as defined by the optical fiber cladding. The glass end section has a radius r4 less than 45 microns, allowing for a high-density FAU and a high-density optical interconnection device.
    Type: Grant
    Filed: August 14, 2020
    Date of Patent: December 7, 2021
    Assignee: Corning Incorporated
    Inventors: Kevin Wallace Bennett, Scott Robertson Bickham, Ximao Feng, Wen-Lung Kuang, Pushkar Tandon, Ruchi Tandon, Shudong Xiao, Bryan William Wakefield, Andy Fenglei Zhou
  • Patent number: 11187853
    Abstract: An optical fiber comprising: (a) a core having an outer radius r1; (b) a cladding having an outer radius r4<32.5 microns; (c) a primary coating surrounding the cladding having an outer radius r5, a thickness tP>8 microns, in situ modulus EP?0.35 MPa and a spring constant ?P<2.0 MPa, where ?P=2EP r4/tP; and (d) a secondary coating surrounding said primary coating, the secondary coating having an outer radius r6 and a thickness tS=r6?r5, and in situ modulus ES of 1200 MPa or greater; tS>8 microns, r6?56 microns. The fiber has a mode field diameter MFD greater than 8.2 microns at 1310 nm; a fiber cutoff wavelength of less than 1310 nm; and a bend loss at a wavelength of 1550 nm, when wrapped around a mandrel having a diameter of 10 mm, of less than 1.0 dB/turn.
    Type: Grant
    Filed: April 23, 2019
    Date of Patent: November 30, 2021
    Assignee: Corning Incorporated
    Inventors: Kevin Wallace Bennett, Scott Robertson Bickham, Pushkar Tandon, Ruchi Tandon
  • Publication number: 20210364690
    Abstract: A single mode optical fiber is provided that includes a core region having an outer radius r1 and a maximum relative refractive index ?1max. The single mode optical fiber has a bend loss at 1550 nm for a 15 mm diameter mandrel of less than about 0.75 dB/turn, has a bend loss at 1550 nm for a 20 mm diameter mandrel of less than about 0.2 dB/turn, and a bend loss at 1550 nm for a 30 mm diameter mandrel of less than 0.002 dB/turn. Additionally, the single mode optical fiber has a mode field diameter of 9.0 microns or greater at 1310 nm wavelength and a cable cutoff of less than or equal to about 1260 nm.
    Type: Application
    Filed: May 13, 2021
    Publication date: November 25, 2021
    Inventors: Snigdharaj Kumar Mishra, Pushkar Tandon
  • Patent number: 11181686
    Abstract: An optical fiber comprising: a core having an outer radius r1; a cladding having an outer radius r4?31 microns; a primary coating surrounding the cladding having an outer radius r5, a thickness tp>10 microns, in situ modulus EP of 0.5 MPa or less, and a spring constant ?P<1 MPa, where ?P=2EP r4/tP; and a secondary coating surrounding said primary coating, the secondary coating having an outer radius r6, a thickness tS=r6-r5, in situ modulus ES of 1200 MPa or greater; tS greater than 9.5 microns, wherein r6 is 50 to 67.5 microns. The fiber has a mode field diameter MFD greater than 8.2 microns at 1310 nm; a fiber cutoff wavelength of less than 1310 nm; and a bend loss at a wavelength of 1550 nm, when wrapped around a mandrel having a diameter of 10 mm, of less than 1.0 dB/turn.
    Type: Grant
    Filed: April 23, 2019
    Date of Patent: November 23, 2021
    Assignee: CORNING INCORPORATED
    Inventors: Kevin Wallace Bennett, Scott Robertson Bickham, Pushkar Tandon, Ruchi Tandon
  • Patent number: 11181685
    Abstract: The present disclosure provides optical fibers with an impact-resistant coating system. The fibers feature low microbending and high mechanical reliability. The coating system includes a primary coating and a secondary coating. The primary coating and secondary coating have reduced thickness to provide reduced radius fibers without sacrificing protection. The primary coating has a low spring constant and sufficient thickness to resist transmission of force to the glass fiber. The secondary coating has high puncture resistance. The outer diameter of the optical fiber is less than or equal to 200 ?m.
    Type: Grant
    Filed: January 5, 2021
    Date of Patent: November 23, 2021
    Assignee: Corning Incorporated
    Inventors: Arash Abedijaberi, Scott Robertson Bickham, Darren Andrew Stainer, Pushkar Tandon
  • Patent number: 11181687
    Abstract: An optical fiber comprising: a core having an outer radius r1; a cladding having an outer radius r4<45 microns; a primary coating surrounding the cladding and having an outer radius r5 and a thickness tp>8 microns, the primary coating having in situ modulus EP of 0.35 MPa or less and a spring constant ?P<1.6 MPa, where ?P=2EP r4/tP; and a secondary coating surrounding said primary coating, the secondary coating having an outer radius r6, a thickness tS=r6?r5, in situ modulus ES of 1200 MPa or greater, wherein >10 microns and r6?85 microns. The fiber has a mode field diameter MFD greater than 8.2 microns at 1310 nm; a cutoff wavelength of less than 1310 nm; and a bend loss at a wavelength of 1550 nm, when wrapped around a mandrel having a diameter of 10 mm, of less than 1.0 dB/turn.
    Type: Grant
    Filed: April 23, 2019
    Date of Patent: November 23, 2021
    Assignee: Corning Incorporated
    Inventors: Kevin Wallace Bennett, Scott Robertson Bickham, Pushkar Tandon, Ruchi Tandon, Bryan William Wakefield
  • Publication number: 20210356655
    Abstract: The optical fibers disclosed is a single mode optical fiber having a core region and a cladding region surrounding and directly adjacent to the core region. The core region can have a radius r1 in a range from 3.0 microns to 6.0 microns and a core volume V1 less than 6.0%-micron2. The cladding region can include a first outer cladding region and a second outer cladding region surrounding and directly adjacent to the first outer cladding region. The first outer cladding region can have a radius r4a, the second outer cladding region can have a radius r4b less than or equal to 65 microns and comprising silica based glass doped with titania. The disclosed single mode optical fiber can have a fiber cutoff wavelength ?CF less than 1530 nm.
    Type: Application
    Filed: May 5, 2021
    Publication date: November 18, 2021
    Inventors: Kevin Wallace Bennett, Scott Robertson Bickham, Ming-Jun Li, Pushkar Tandon