Patents by Inventor Q.Z. Liu

Q.Z. Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7173318
    Abstract: Method for fabrication of on-chip inductors and related structure are disclosed. According to one embodiment, inductors are formed by patterning conductors within a certain dielectric layer in a semiconductor die. Thereafter, the entire dielectric layer in the semiconductor die is subjected to a blanket implantation or sputtering of high permeability material. According to another embodiment, a first area in a semiconductor die is covered, for example, with photoresist. A second area in the semiconductor die includes a patterned conductor which is to be used as an inductor. The patterned conductor is also covered, for example, with photoresist. The second area, excluding the covered patterned conductor, is subjected to implantation or sputtering of high permeability material. According to yet another embodiment, a first area of a semiconductor die is covered, for example, with photoresist. A second area in the semiconductor area includes a patterned conductor which is to be used as an inductor.
    Type: Grant
    Filed: January 2, 2001
    Date of Patent: February 6, 2007
    Assignee: Newport Fab, LLC
    Inventors: Q Z Liu, Bin Zhao, David Howard
  • Patent number: 7109125
    Abstract: Method for selective fabrication of high capacitance density areas in a low dielectric constant material and related structure are disclosed. In one embodiment, a first area of a dielectric layer is covered, for example with photoresist, while a second area of the dielectric layer is exposed to a dielectric conversion source such as E-beams, I-beams, oxygen plasma, or an appropriate chemical. The exposure causes the dielectric constant of the dielectric layer in the second area to increase. A number of capacitor trenches are etched in the second area of the dielectric. The capacitor trenches are then filled with an appropriate metal, such as copper, and a chemical mechanical polish is performed. The second area in which the capacitor trenches have been etched and filled has a higher capacitance density relative to the first area. In another embodiment, the exposure to the dielectric conversion source is not performed until after the chemical mechanical polish has been performed.
    Type: Grant
    Filed: November 22, 2004
    Date of Patent: September 19, 2006
    Assignee: Newport Fab, LLC
    Inventors: Q. Z. Liu, David Feiler, Bin Zhao, Phil N. Sherman, Maureen Brongo
  • Patent number: 7049246
    Abstract: Method for selective fabrication of high capacitance density areas in a low dielectric constant material and related structure are disclosed. In one embodiment, a first area of a dielectric layer is covered while a second area of the dielectric layer is exposed to a dielectric conversion source. The exposure causes the dielectric constant of the dielectric layer in the second area to increase. A number of interconnect trenches are etched in the first area of the dielectric and a number of capacitor trenches are etched in the second area of the dielectric. The interconnect trenches and the capacitor trenches are then filled with an appropriate metal, such as copper, and a chemical mechanical polish is performed. The second area in which the capacitor trenches have been etched and filled has a higher capacitance density relative to the first area.
    Type: Grant
    Filed: May 19, 2000
    Date of Patent: May 23, 2006
    Assignee: Newport Fab, LLC
    Inventors: Q. Z. Liu, David Feiler, Bin Zhao, Phil N. Sherman, Maureen Brongo
  • Patent number: 6943414
    Abstract: According to one exemplary embodiment, an integrated circuit chip comprises a first interconnect metal layer. The integrated circuit chip further comprises a first intermediate dielectric layer situated over the first interconnect metal layer. The integrated circuit chip further comprises a metal resistor situated over the first intermetallic dielectric layer and below a second intermetallic dielectric layer. The integrated circuit chip further comprises a second interconnect metal layer over the second intermetallic dielectric layer. The integrated circuit chip further comprises a first intermediate via connected to first terminal of the metal resistor, where the first intermediate via is further connected to a first metal segment patterned in the second interconnect metal layer.
    Type: Grant
    Filed: February 9, 2002
    Date of Patent: September 13, 2005
    Assignee: Newport Fab, LLC
    Inventors: Arjun Kar Roy, David Howard, Q.Z. Liu
  • Patent number: 6534406
    Abstract: A disclosed embodiment comprises patterning a conductor in a dielectric in a semiconductor die. The dielectric can be, for example, silicon oxide or a low-k dielectric while the conductor can comprise aluminum, copper, or a copper-aluminum alloy. Thereafter, a blanket of high permeability layer is deposited over the dielectric. The high permeability layer can comprise high permeability materials such as nickel, iron, nickel-iron alloy, or a magnetic oxide. The blanket deposition of the high permeability layer can be accomplished by, for example, a sputtering technique. After depositing the high permeability layer, a portion of the atoms or molecules in the high permeability layer is driven into the underlying dielectric to increase the permeability of the dielectric. As an example, an ion implanter using heavy ions such as silicon ions or germanium ions can be used to drive some of the atoms or molecules in the high permeability layer into the underlying dielectric.
    Type: Grant
    Filed: September 22, 2000
    Date of Patent: March 18, 2003
    Assignee: Newport Fab, LLC
    Inventors: David J. Howard, Q.Z Liu
  • Patent number: 6459352
    Abstract: In an exemplary embodiment of the disclosed transformer, the transformer comprises a dielectric area. For example, the dielectric area can consist of three different dielectric layers. Also, by way of example, the dielectric area can comprise silicon dioxide or a low-k dielectric. According to the exemplary embodiment, the dielectric area is interspersed with a permeability conversion material. The permeability conversion material has a permeability higher than the permeability of the dielectric area. For example, the permeability conversion material can be nickel, iron, nickel-iron alloy, or magnetic oxide. The exemplary embodiment further comprises a first conductor and also a second conductor patterned into the dielectric area. The first and/or the second conductor can comprise copper, aluminum, or a copper-aluminum alloy. Each of the first and second conductors are made up of a number of turns which result in, respectively, the primary and secondary windings of the exemplary disclosed transformer.
    Type: Grant
    Filed: February 8, 2001
    Date of Patent: October 1, 2002
    Assignee: Skyworks Solutions, Inc.
    Inventors: Q. Z. Liu, David Howard
  • Publication number: 20020132442
    Abstract: According to one exemplary embodiment, an integrated circuit chip comprises a first interconnect metal layer. The integrated circuit chip further comprises a first intermediate dielectric layer situated over the first interconnect metal layer. The integrated circuit chip further comprises a metal resistor situated over the first intermetallic dielectric layer and below a second intermetallic dielectric layer. The integrated circuit chip further comprises a second interconnect metal layer over the second intermetallic dielectric layer. The integrated circuit chip further comprises a first intermediate via connected to first terminal of the metal resistor, where the first intermediate via is further connected to a first metal segment patterned in the second interconnect metal layer.
    Type: Application
    Filed: February 9, 2002
    Publication date: September 19, 2002
    Applicant: CONEXANT SYSTEMS, INC.
    Inventors: Arjun Kar Roy, David Howard, Q.Z. Liu
  • Patent number: 6444136
    Abstract: Fabrication of improved low-k dielectric structures is disclosed. Low-k dielectric structures are fabricated while overcoming the otherwise existing problems associated with the use of low-k dielectric materials. In one embodiment, the physical properties of a low-k dielectric material is modified by exposing the low-k dielectric material to electron beams. The exposed portion of the low-k dielectric material becomes easier to etch and clean and exhibits greater mechanical strength and a reduction in absorption of moisture. In another embodiment, a number of incremental exposure and etch steps are performed to fabricate a desired structure. In yet another embodiment, the steps of exposure of a low-k dielectric material are combined with the etch steps. The exposure and the etching of the low-k dielectric material are performed concurrently in the same system. In still another embodiment, a single exposure and a single etch step are utilized to fabricate a desired structure.
    Type: Grant
    Filed: April 25, 2000
    Date of Patent: September 3, 2002
    Assignee: Newport Fab, LLC
    Inventors: Q. Z. Liu, Bin Zhao
  • Publication number: 20020105406
    Abstract: In an exemplary embodiment of the disclosed transformer, the transformer comprises a dielectric area. For example, the dielectric area can consist of three different dielectric layers. Also, by way of example, the dielectric area can comprise silicon dioxide or a low-k dielectric. According to the exemplary embodiment, the dielectric area is interspersed with a permeability conversion material. The permeability conversion material has a permeability higher than the permeability of the dielectric area. For example, the permeability conversion material can be nickel, iron, nickel-iron alloy, or magnetic oxide. The exemplary embodiment further comprises a first conductor and also a second conductor patterned into the dielectric area. The first and/or the second conductor can comprise copper, aluminum, or a copper-aluminum alloy. Each of the first and second conductors are made up of a number of turns which result in, respectively, the primary and secondary windings of the exemplary disclosed transformer.
    Type: Application
    Filed: February 8, 2001
    Publication date: August 8, 2002
    Applicant: CONEXANT SYSTEMS, INC.
    Inventors: Q.Z. Liu, David J. Howard
  • Patent number: 6417755
    Abstract: According to various embodiments, a conductor is patterned in a dielectric. The conductor can be patterned, for example, in the shape of a square spiral. The conductor can comprise, for example, copper, aluminum, or copper-aluminum alloy. The dielectric can be, for example, silicon oxide or a low-k dielectric. Trenches are etched next to the patterned conductor in the dielectric. The trenches are filled with a material having a permeability substantially higher than the permeability of the dielectric. The high permeability material can be, for example, nickel, iron, nickel-iron alloy, or magnetic oxide. As a result, an inductor having a high inductance value is achieved without lowering the quality factor of the inductor.
    Type: Grant
    Filed: August 25, 2000
    Date of Patent: July 9, 2002
    Assignee: Conexant Systems, Inc.
    Inventors: Q. Z. Liu, David J Howard
  • Patent number: 6396122
    Abstract: According to various disclosed embodiments, a conductor is patterned in a dielectric. The conductor can be patterned, for example, in the shape of a square spiral. The conductor can comprise, for example, copper, aluminum, or copper-aluminum alloy. The dielectric can be, for example, silicon oxide or a low-k dielectric. A spin-on matrix containing high permeability particles is then deposited adjacent to the patterned conductor. The high permeability particles comprise material having a permeability substantially higher than the permeability of the dielectric. The high permeability particles can comprise, for example, nickel, iron, nickel-iron alloy, or magnetic oxide. As a result, an inductor having a high inductance value is achieved without lowering the quality factor of the inductor.
    Type: Grant
    Filed: September 8, 2000
    Date of Patent: May 28, 2002
    Assignee: Newport Fab, LLC
    Inventors: David Howard, Bin Zhao, Q. Z. Liu
  • Patent number: 6380078
    Abstract: Method for fabrication of damascene interconnects and related structures is disclosed. A sacrificial layer is formed over a low-k dielectric. Trenches are then etched inside the sacrificial layer and the low-k dielectric. The trenches are then filled with metal. During a first CMP process, excess metal over the sacrificial layer is removed. During a second CMP process, the sacrificial layer over the low-k dielectric and any remaining excess metal are removed. By the end of the second CMP process substantially all of the sacrificial layer and all of the excess metal are removed. In this manner, the trenches in the low-k dielectric are filled with metal where the metal surface is substantially flush with the surface of the low-k dielectric.
    Type: Grant
    Filed: May 11, 2000
    Date of Patent: April 30, 2002
    Assignee: Conexant Systems, Inc.
    Inventors: Q. Z. Liu, Lawrence E. Camilletti
  • Publication number: 20020011646
    Abstract: Method for fabrication of on-chip inductors and related structure are disclosed. According to one embodiment, inductors are formed by patterning conductors within a certain dielectric layer in a semiconductor die. Thereafter, the entire dielectric layer in the semiconductor die is subjected to a blanket implantation or sputtering of high permeability material. According to another embodiment, a first area in a semiconductor die is covered, for example, with photoresist. A second area in the semiconductor die includes a patterned conductor which is to be used as an inductor. The patterned conductor is also covered, for example, with photoresist. The second area, excluding the covered patterned conductor, is subjected to implantation or sputtering of high permeability material. According to yet another embodiment, a first area of a semiconductor die is covered, for example, with photoresist. A second area in the semiconductor area includes a patterned conductor which is to be used as an inductor.
    Type: Application
    Filed: January 2, 2001
    Publication date: January 31, 2002
    Applicant: Conexant Systems, Inc.
    Inventors: Q.Z. Liu, Bin Zhao, David Howard
  • Patent number: 6309922
    Abstract: Method for fabrication of on-chip inductors and related structure are disclosed. According to one embodiment, inductors are formed by patterning conductors within a certain dielectric layer in a semiconductor die. Thereafter, the entire dielectric layer in the semiconductor die is subjected to a blanket implantation or sputtering of high permeability material. According to another embodiment, a first area in a semiconductor die is covered, for example, with photoresist. A second area in the semiconductor die includes a patterned conductor which is to be used as an inductor. The patterned conductor is also covered, for example, with photoresist. The second area, excluding the covered patterned conductor is subjected to implantation or sputtering of high permeability material. According to yet another embodiment, a first area of a semiconductor die is covered, for example, with photoresist. A second area in the semiconductor area includes a patterned conductor which is to be used as an inductor.
    Type: Grant
    Filed: July 28, 2000
    Date of Patent: October 30, 2001
    Assignee: Conexant Systems, Inc.
    Inventors: Q. Z. Liu, Bin Zhao, David Howard