Patents by Inventor Q. Zhang

Q. Zhang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230372395
    Abstract: The present disclosure relates generally to technologies comprising engineered immune cells that express chimeric antigen receptors (CARs) that specifically bind to a membrane-inserting amphiphilic ligand. Also disclosed herein are methods and compositions for treating a tumor.
    Type: Application
    Filed: March 17, 2023
    Publication date: November 23, 2023
    Applicant: Massachusetts Institute of Technology
    Inventors: Darrell J. Irvine, Angela Q. Zhang, Laura Shang-Bin Elizabeth Chen, Alexander Hostetler
  • Patent number: 11505704
    Abstract: An aerosol primer composition includes a film forming component and a propellant component. The film forming component includes (by weight of the composition): (a) at least one of a polyurethane and alkyd from about 10% to about 20%, (b) cellulosic particles from about 2% to about 5%, and (c) an aqueous solvent system from about 20% to about 40%. The propellant component includes dimethyl ether. The aerosol primer composition can be stored within a spray assembly and the propellant component can be configured to pressurize the film forming component for dispensing from the spray assembly as an aerosol. The aerosol primer composition can be used to prime a substrate to be painted or stained.
    Type: Grant
    Filed: April 30, 2020
    Date of Patent: November 22, 2022
    Assignee: PLZ Corp.
    Inventors: Peter Q. Zhang, Howard E. Matthews, Tejas R. Patel, Christian P. Akow
  • Patent number: 11410830
    Abstract: A system is disclosed. In one embodiment, the system includes a scanning electron microscopy sub-system including an electron source configured to generate an electron beam and an electron-optical assembly including one or more electron-optical elements configured to direct the electron beam to the specimen. In another embodiment, the system includes one or more grounding paths coupled to the specimen, the one or more grounding paths configured to generate one or more transmission signals based on one or more received electron beam-induced transmission currents. In another embodiment, the system includes a controller configured to: generate control signals configured to cause the scanning electron microscopy sub-system to scan the portion of the electron beam across a portion of the specimen; receive the transmission signals via the one or more grounding paths; and generate transmission current images based on the transmission signals.
    Type: Grant
    Filed: May 23, 2019
    Date of Patent: August 9, 2022
    Assignee: KLA Corporation
    Inventors: Hong Xiao, Lawrence Muray, Nick Petrone, John Gerling, Abdurrahman Sezginer, Alan D. Brodie, Kuljit Virk, Qiang Q. Zhang, Grace Hsiu-Ling Chen
  • Patent number: 11356594
    Abstract: A system for automated focus tracking of a sample is disclosed. The system comprises an illumination source, a set of illumination optics in an illumination path, a set of collection optics in a collection path, a first slit device in the illumination path, a second slit device in the collection path, at least one detector configured to generate an image of the sample, and a controller configured to receive through-focus information from the image, and provide corrective motion to a stage holding the sample to maintain a position of the sample at a selected focus. A method for automated focus tracking of a sample is also disclosed.
    Type: Grant
    Filed: August 17, 2020
    Date of Patent: June 7, 2022
    Assignee: KLA Corporation
    Inventors: Brooke Bruguier, Xiumei Liu, Qiang Q. Zhang, Stephen Taylor
  • Patent number: 10828778
    Abstract: A method for operating a robot includes: creating a production robot program for execution on a robotic controller, wherein the robot program defines a robot path; performing an offline simulation of robot motion along the robot path using the production robot program; analyzing loads between a robot end effector and an object along the robot path, based on the offline simulation, to identify a maximum load experienced during the simulation; tuning production robot program parameters to reduce the maximum load if the maximum load is not within a predefined limit; generating a test robot program to test the end effector and the object with the maximum load within the predefined limit; testing the end effector with the object online using the test robot program; repeating the tuning and testing until no objects are dropped during the testing; and operating the robot during production using tuned robot program parameters.
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: November 10, 2020
    Assignee: ABB Schweiz AG
    Inventors: Biao Zhang, Xiongzi Li, George Q. Zhang
  • Publication number: 20200347237
    Abstract: An aerosol primer composition includes a film forming component and a propellant component. The film forming component includes (by weight of the composition): (a) at least one of a polyurethane and alkyd from about 10% to about 20%, (b) cellulosic particles from about 2% to about 5%, and (c) an aqueous solvent system from about 20% to about 40%. The propellant component includes dimethyl ether. The aerosol primer composition can be stored within a spray assembly and the propellant component can be configured to pressurize the film forming component for dispensing from the spray assembly as an aerosol. The aerosol primer composition can be used to prime a substrate to be painted or stained.
    Type: Application
    Filed: April 30, 2020
    Publication date: November 5, 2020
    Inventors: Peter Q. Zhang, Howard E. Matthews, Tejas R. Patel, Christian P. Akow
  • Patent number: 10712391
    Abstract: A modular device is used to inspect a confined space in a machine. The entire inspection coverage area and corresponding status are mapped so that the inspection location and associated data are graphically visualized. An accelerometer mounted on the device serves as a tilt sensor and also provides data about a collision of the device with the space being inspected or defects therein. The accelerometer data in combination with an odometry system determines the axial position of the device. A gyroscope mounted on the device is used to determine the device heading. The locational information is used to generate an inspection map that provides inspection history, logged data and a reference that are useful in scheduling the next inspection. The output of the gyroscopes can be used to provide haptic feedback to the device operator to maintain proper device orientation.
    Type: Grant
    Filed: November 7, 2017
    Date of Patent: July 14, 2020
    Assignee: ABB Schweiz AG
    Inventors: Sangeun Choi, George Q. Zhang, Thomas A. Fuhlbrigge, Hetal V. Lakhani, Than Htaik, Gregory Penza, Robert Kodadek, William John Eakins, Gregory F. Rossano
  • Patent number: 10668623
    Abstract: A method for robotic adaptive production includes modifying program instructions online while performing production activities in response to detecting a change in the production environment. A robotic adaptive production method includes modifying program instructions online while performing production activities to minimize a production task cycle time or improve a production task quality. A robotic adaptive production method includes estimating a relationship between a control parameter and a sensor input; and modifying the control parameter online to achieve an updated parameter based on the estimating. A robotic adaptive production method includes receiving sensor input relating to robotic performance during the performance of production tasks and online optimizing a process parameter based on robotic performance during the performance of the production tasks.
    Type: Grant
    Filed: May 31, 2016
    Date of Patent: June 2, 2020
    Assignees: ABB Schweiz AG, Ford Motor Company
    Inventors: George Q. Zhang, David P. Gravel, Soenke Kock, Thomas A. Fuhlbrigge, Heping Chen, Sangeun Choi, Arnold Bell, Biao Zhang
  • Patent number: 10528034
    Abstract: One exemplary embodiment is a method comprising generating robot control code from one or more files including part geometry parameters, material addition parameters, and robot system parameters. The robot control code includes instructions to control position and material output of an additive manufacturing tool adjustable over six degrees of freedom. The method includes simulating execution of the robot control code to generate a virtual part file including virtual part geometry parameters and material addition parameters, analyzing the virtual part geometry parameters and material addition parameters relative to the one or more files, and executing the robot control code with the controller to produce the part with robot system if the analyzing indicates that the virtual part satisfies one or more conditions.
    Type: Grant
    Filed: August 25, 2017
    Date of Patent: January 7, 2020
    Assignee: ABB Schweiz AG
    Inventors: George Q. Zhang, Xiongzi Li, Daniel X. Wappling, Anders Spaak, Biao Zhang, Remus Boca, Thomas A. Fuhlbrigge
  • Publication number: 20190356891
    Abstract: A method and apparatus for image processing. A data conversion and color-space mapping (DCM) circuit includes an inverse opto-electrical transfer function (IOETF), a color-space converter, and a color-space re-mapper. The IOETF receives image data for one or more frames acquired by an image capture device and transfers the image data from a non-linear domain to a linear domain. The color-space converter converts the linear image data from a first color space to a second color space, where each of the first and second color spaces is based on a gamut of the image capture device. The color-space re-mapper processes the image data to be rendered on a display device by remapping the converted image data from the second color space to a third color space, where the third color space is based on a gamut of the display device.
    Type: Application
    Filed: March 29, 2019
    Publication date: November 21, 2019
    Inventors: Chang Q. ZHANG, Jun ZHANG, Chandranath MANCHI, Yicai YING
  • Patent number: 10440318
    Abstract: A system including a motion adaptive de-interlacer, a film mode detector, and a combiner. The motion adaptive de-interlacer is configured to determine a first output by de-interlacing a plurality of interlaced frames based on at least a first motion indicator indicating motion between fields of the plurality of interlaced frames. The film mode detector is configured to determine a second output based on a film mode detected based on at least a second motion indicator indicating motion between fields of the plurality of interlaced frames. The film mode detector is further configured to output a control signal based on the second motion indicator and the film mode. The combiner is configured to combine the first output and the second output based on the control signal.
    Type: Grant
    Filed: March 12, 2018
    Date of Patent: October 8, 2019
    Assignees: SYNAPTICS INCORPORATED, SYNAPTICS LLC
    Inventors: Chang Q. Zhang, Dam Le Quang
  • Publication number: 20190160678
    Abstract: A method for operating a robot includes: creating a production robot program for execution on a robotic controller, wherein the robot program defines a robot path; performing an offline simulation of robot motion along the robot path using the production robot program; analyzing loads between a robot end effector and an object along the robot path, based on the offline simulation, to identify a maximum load experienced during the simulation; tuning production robot program parameters to reduce the maximum load if the maximum load is not within a predefined limit; generating a test robot program to test the end effector and the object with the maximum load within the predefined limit; testing the end effector with the object online using the test robot program; repeating the tuning and testing until no objects are dropped during the testing; and operating the robot during production using tuned robot program parameters.
    Type: Application
    Filed: November 30, 2017
    Publication date: May 30, 2019
    Inventors: Biao Zhang, Xiongzi Li, George Q. Zhang
  • Publication number: 20190124900
    Abstract: Embodiments are directed to rod tip guides. A rod tip guide may comprise a ring body, a rod tube, a foot, and a leg. The rod tube may be mechanically coupled to the ring body and configured to receive a tip end portion of a rod. The foot may be configured to be mechanically coupled to a circumferential surface of the rod when the tip end portion of the rod is received in the rod tube. The leg may have a proximal end portion and a distal end portion. The proximal end portion of the leg may be mechanically coupled to the ring body, the distal end portion of the leg may be mechanically coupled to the foot, and the leg may be configured to maintain a separation space between the rod tube and the foot when the tip end portion of the rod is received in the rod tube.
    Type: Application
    Filed: October 30, 2017
    Publication date: May 2, 2019
    Applicant: V-Mark Enterprises Ltd.
    Inventor: George Q. Zhang
  • Publication number: 20190036337
    Abstract: A robotic 3D printing system has a six degree of freedom (DOF) robot (12) that holds the platform (16) on which the 3D pad (15) is built on. The system uses the dexterity of the 6 DOF robot to move and rotate rue platform relative to the 3D printing head (18), which deposits the material on the platform. The system allows the part build in 3D directly with a simple printing head and depositing the material along the gravity direction. The 3D printing head is held by another robot (14) or robots. The robot movement can be calibrated to improve the accuracy and efficiency for high precision 3D part printing.
    Type: Application
    Filed: October 2, 2018
    Publication date: January 31, 2019
    Inventors: Biao Zhang, Remus Boca, Jeremy Newkirk, Thomas A. Fuhlbrigge, George Q. Zhang, Xiongzi Li
  • Publication number: 20180205908
    Abstract: A system including a motion adaptive de-interlacer, a film mode detector, and a combiner. The motion adaptive de-interlacer is configured to determine a first output by de-interlacing a plurality of interlaced frames based on at least a first motion indicator indicating motion between fields of the plurality of interlaced frames. The film mode detector is configured to determine a second output based on a film mode detected based on at least a second motion indicator indicating motion between fields of the plurality of interlaced frames. The film mode detector is further configured to output a control signal based on the second motion indicator and the film mode. The combiner is configured to combine the first output and the second output based on the control signal.
    Type: Application
    Filed: March 12, 2018
    Publication date: July 19, 2018
    Inventors: Chang Q. Zhang, Dam Le Quang
  • Publication number: 20180186072
    Abstract: A method for manufacturing an article includes initiating additive manufacturing of the article, and forming a portion of the article using an additive manufacturing process on an additive manufacturing system. The additive manufacturing process may be paused, and a procedure may be performed on the article. The additive manufacturing process may be resumed and the article completed. A system for performing additive manufacturing of an article includes a printhead, and drive modules operative to generate translational motion between the printhead and a build surface in more than one axis. A rotational joint is operative to rotate the printhead about at least one axis.
    Type: Application
    Filed: December 30, 2017
    Publication date: July 5, 2018
    Inventors: Gregory F. Rossano, George Q. Zhang, David Alan Bourne
  • Patent number: 9918041
    Abstract: A system including a motion adaptive de-interlacer, a film mode detector, and a combiner. The motion adaptive de-interlacer is configured to determine a first output by de-interlacing a plurality of interlaced frames based on at least a first motion indicator indicating motion between fields of the plurality of interlaced frames. The film mode detector is configured to determine a second output based on a film mode detected based on at least a second motion indicator indicating motion between fields of the plurality of interlaced frames. The film mode detector is further configured to output a control signal based on the second motion indicator and the film mode. The combiner is configured to combine the first output and the second output based on the control signal.
    Type: Grant
    Filed: April 22, 2016
    Date of Patent: March 13, 2018
    Assignees: SYNAPTICS INCORPORATED, SYNAPTICS LLC
    Inventors: Chang Q. Zhang, Dam Le Quang
  • Patent number: 9914221
    Abstract: A machine has at least one actuated mechanism is remotely located from a control station. A two way real-time communication link connects the machine location with the control station. A controller at the machine location has program code that is configured to determine from data from one or more sensors at the machine location if an actual fault has occurred in the machine when the machine is performing its predetermined function and to determine for an actual fault one or more types for the fault and transmit the one or more fault types to the control station for analysis. The code in the controller is configured to be a preprogrammed trap routine specific to the machine function that is automatically executed when an error in machine operation is detected at the machine location. The controller also has a default trap routine that is executed when the specific routine does not exist.
    Type: Grant
    Filed: June 8, 2017
    Date of Patent: March 13, 2018
    Assignee: ABB Schweiz AG
    Inventors: Biao Zhang, Jianjun Wang, George Q. Zhang, Sangeun Choi, Remus Boca, Thomas A. Fuhlbrigge, Tomas Groth
  • Publication number: 20180059187
    Abstract: A modular device is used to inspect a confined space in a machine. The entire inspection coverage area and corresponding status are mapped so that the inspection location and associated data are graphically visualized. An accelerometer mounted on the device serves as a tilt sensor and also provides data about a collision of the device with the space being inspected or defects therein. The accelerometer data in combination with an odometry system determines the axial position of the device. A gyroscope mounted on the device is used to determine the device heading. The locational information is used to generate an inspection map that provides inspection history, logged data and a reference that are useful in scheduling the next inspection. The output of the gyroscopes can be used to provide haptic feedback to the device operator to maintain proper device orientation.
    Type: Application
    Filed: November 7, 2017
    Publication date: March 1, 2018
    Inventors: Sangeun Choi, George Q. Zhang, Thomas A. Fuhlbrigge, Hetal V. Lakhani, Than Htaik, Gregory Penza, Robert Kodadek, William John Eakins
  • Publication number: 20170351245
    Abstract: One exemplary embodiment is a method comprising generating robot control code from one or more files including part geometry parameters, material addition parameters, and robot system parameters. The robot control code includes instructions to control position and material output of an additive manufacturing tool adjustable over six degrees of freedom. The method includes simulating execution of the robot control code to generate a virtual part file including virtual part geometry parameters and material addition parameters, analyzing the virtual part geometry parameters and material addition parameters relative to the one or more files, and executing the robot control code with the controller to produce the part with robot system if the analyzing indicates that the virtual part satisfies one or more conditions.
    Type: Application
    Filed: August 25, 2017
    Publication date: December 7, 2017
    Inventors: George Q. Zhang, Xiongzi Li, Daniel X. Wappling, Anders Spaak, Biao Zhang, Remus Boca, Thomas A. Fuhlbrigge