Patents by Inventor Qingxiang Li

Qingxiang Li has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8947305
    Abstract: An electronic device may have a housing in which an antenna is mounted. An antenna window may be mounted in the housing to allow radio-frequency signals to be transmitted from the antenna and to allow the antenna to receive radio-frequency signals. Near-field radiation limits may be satisfied by reducing transmit power when an external object is detected in the vicinity of the dielectric antenna window and the antenna. A capacitive proximity sensor may be used in detecting external objects in the vicinity of the antenna. The proximity sensor may have conductive layers separated by a dielectric. A capacitance-to-digital converter may be coupled to the proximity sensor by inductors. The capacitive proximity sensor may be interposed between an antenna resonating element and the antenna window. The capacitive proximity sensor may serve as a parasitic antenna resonating element and may be coupled to the housing by a capacitor.
    Type: Grant
    Filed: April 26, 2013
    Date of Patent: February 3, 2015
    Assignee: Apple Inc.
    Inventors: David T. Amm, Robert W. Schlub, Omar S. Leung, Brian M. King, Qingxiang Li, Enrique Ayala Vazquez, Rodney A. Gomez Angulo, Yi Jiang, Ruben Caballero
  • Patent number: 8922443
    Abstract: An electronic device may be provided with antenna structures. The antenna structures may be formed using a dielectric carrier structure. The antenna structures may have first and second loop antenna resonating elements. The first loop antenna resonating element may indirectly feed the second loop antenna resonating element. The second loop antenna resonating element may be a distributed loop element formed from multiple antenna resonating element subloops. The second loop antenna resonating element may be formed from a strip of metal with a width that loops around the dielectric carrier. An opening in the metal may separate first and second subloop antenna resonating elements from each other in the second loop antenna resonating element. Openings in the metal may form metal segments that collectively form an inductance for the first subloop. Antenna currents may flow through metal traces on the carrier and portions of an electronic device housing wall.
    Type: Grant
    Filed: September 27, 2012
    Date of Patent: December 30, 2014
    Assignee: Apple Inc.
    Inventors: Jiang Zhu, Qingxiang Li, Robert W. Schlub, Ruben Caballero
  • Patent number: 8896488
    Abstract: Antennas are provided for electronic devices such as portable computers. Multiple resonating elements may be formed on a flexible antenna resonating element substrate. The flexible antenna resonating element substrate may have a first antenna resonating element at one end and a second antenna resonating element at an opposing end. The flexible antenna resonating substrate may be wrapped around a dielectric carrier and mounted within an electronic device under an inactive display region and above a dielectric housing window. Conductive structures such as conductive housing structures may form antenna ground. The resonating elements and antenna ground may form first and second antennas. A parasitic antenna resonating element may form part of the first antenna.
    Type: Grant
    Filed: March 1, 2011
    Date of Patent: November 25, 2014
    Assignee: Apple Inc.
    Inventors: Enrique Ayala Vazquez, Erik A. Uttermann, Salih Yarga, Qingxiang Li, Robert W. Schlub
  • Publication number: 20140292587
    Abstract: An electronic device may have an antenna for providing coverage in wireless communications bands of interest. The wireless communications bands may include a communications band at a first frequency. The antenna may have a parasitic antenna resonating element that supports a low efficiency resonance. In response to operation of the electronic device in free space, the low efficiency resonance will be located at a second frequency that is greater than the first frequency. In response to operation of the electronic device in proximity to a user's body or other external object, the antenna will be loaded and the low efficiency resonance associated with the parasitic antenna resonating element will shift to the communications band at the first frequency. The antenna may include a resonating element formed on a flexible printed circuit or a dielectric carrier such as a plastic support structure.
    Type: Application
    Filed: April 2, 2013
    Publication date: October 2, 2014
    Applicant: Apple Inc.
    Inventors: Salih Yarga, Qingxiang Li, Robert W. Schlub
  • Publication number: 20140292591
    Abstract: Electronic devices are provided that contain wireless communications circuitry. The wireless communications circuitry may include radio-frequency transceiver circuitry and antenna structures. The antenna structures may include antennas such as inverted-F antennas that contain antenna resonating elements and antenna ground elements. Antenna resonating elements may be formed from patterned conductive traces on substrates such as flex circuit substrates. Antenna ground elements may be formed from conductive device structures such as metal housing walls. Support and biasing structures such as dielectric support members and layer of foam may be used to support and bias antenna resonating elements against planar device structures. The planar device structures against which the antenna resonating elements are biased may be planar dielectric members such as transparent layers of display cover glass or other planar structures.
    Type: Application
    Filed: June 16, 2014
    Publication date: October 2, 2014
    Inventors: Qingxiang Li, Robert W. Schlub, Fletcher R. Rothkopf, Adam D. Mittleman, Yi Jiang, Emily McMilin, Li-jun Zhang
  • Publication number: 20140253392
    Abstract: An electronic device may have an antenna for providing coverage in wireless communications bands of interest such as a low frequency communications band, a middle frequency communications band, and a high frequency communications band. Slot structures in the antenna that might reduce efficiency in the high frequency communications band may be avoided by capacitively loading the antenna and omitting meandering paths in the antenna. A capacitor may be coupled between an antenna ground formed from a metal housing structure and an antenna resonating element having a curved shape that conforms to the shape of the edge of the electronic device. The capacitor may have interdigitated fingers and may be adjustable to tune the antenna. The antenna may transmit and receive radio-frequency signals through a display cover layer in a display and a dielectric antenna window portion of the housing.
    Type: Application
    Filed: March 8, 2013
    Publication date: September 11, 2014
    Applicant: Apple Inc.
    Inventors: Salih Yarga, Qingxiang Li, Robert W. Schlub
  • Publication number: 20140185857
    Abstract: A portable computing device is disclosed. The portable computing device can take many forms such as a laptop computer, a tablet computer, and so on. The portable computing device can include a single piece housing formed from a radio opaque material with a cover formed from a radio transparent material. To implement a wireless interface, an antenna stack-up can be provided that allows an antenna to be mounted to a bottom of the cover. Methods and apparatus are provided for improving wireless performance. For instance, in one embodiment, a metal housing can be thinned to improve antenna performance. As another example, a faraday cage can be formed around speaker drivers to improve antenna performance.
    Type: Application
    Filed: March 4, 2014
    Publication date: July 3, 2014
    Applicant: Apple Inc.
    Inventors: Eric A. Uttermann, Jeremy C. Franklin, Stephen C. McClure, Sean S. Corbin, Qingxiang Li, Rodney A. Gomez Angulo
  • Patent number: 8766858
    Abstract: Electronic devices are provided that contain wireless communications circuitry. The wireless communications circuitry may include radio-frequency transceiver circuitry and antenna structures. The antenna structures may include antennas such as inverted-F antennas that contain antenna resonating elements and antenna ground elements. Antenna resonating elements may be formed from patterned conductive traces on substrates such as flex circuit substrates. Antenna ground elements may be formed from conductive device structures such as metal housing walls. Support and biasing structures such as dielectric support members and layer of foam may be used to support and bias antenna resonating elements against planar device structures. The planar device structures against which the antenna resonating elements are biased may be planar dielectric members such as transparent layers of display cover glass or other planar structures.
    Type: Grant
    Filed: August 27, 2010
    Date of Patent: July 1, 2014
    Assignee: Apple Inc.
    Inventors: Qingxiang Li, Robert W. Schlub, Fletcher R. Rothkopf, Adam D. Mittleman, Yi Jiang, Emily McMilin, Lijun Zhang
  • Publication number: 20140112511
    Abstract: An electronic device may have a housing such as a metal housing. A display may be mounted in the metal housing. Antenna structures may be mounted in the housing under an inactive peripheral portion of the display. Integrated circuits and other electrical components may be mounted in the housing under an active central portion of the display. Shielding structures may be configured to form a wall that extends between the display and the metal housing. The shielding structures may include a sheet of conductive fabric that is shorted to the metal housing and metal chassis structures in the display. The shielding structures may also include a tube of conductive fabric that is capacitively coupled to ground traces in a touch sensor panel. The conductive fabric tube and the sheet of conductive fabric may be shorted to each other using conductive adhesive.
    Type: Application
    Filed: October 18, 2012
    Publication date: April 24, 2014
    Applicant: Apple Inc.
    Inventors: Sean S. Corbin, Taylor H. Gilbert, Rodney A. Gomez Angulo, Qingxiang Li, Stephen R. McClure, Julio C. Quintero, Miroslav Samardzija, Robert W. Schlub, Jiang Zhu
  • Publication number: 20140111684
    Abstract: An electronic device may have a conductive housing with an antenna window. Antenna structures may be mounted adjacent to the antenna window. The antenna structures may have a dielectric carrier. Patterned metal antenna traces may be formed on the surface of the dielectric carrier. A proximity sensor may be formed from a flexible printed circuit mounted on the dielectric carrier. The flexible printed circuit may have a tail that contains a transmission line for feeding the antenna structures. The transmission line may include a positive signal conductor that is maintained at a desired distance from the conductive housing using a polymer sheet. A portion of the antenna structures may protrude between a microphone and a camera module. Plastic camera module housing structures may have an inner surface coated with a shielding metal. A U-shaped conductive fabric layer may be used as a grounding structure.
    Type: Application
    Filed: October 18, 2012
    Publication date: April 24, 2014
    Applicant: Apple, Inc.
    Inventors: Sean S. Corbin, Taylor H. Gilbert, Rodney A. Gomez Angulo, Yi Jiang, Conor P. Lenahan, Qingxiang Li, Stephen R. McClure, Robert W. Schlub, Salih Yarga, Jiang Zhu
  • Publication number: 20140100004
    Abstract: Antenna structures for an antenna may be formed from a dielectric carrier with metal structures. The metal structures may be patterned to cover all sides of the dielectric carrier. The dielectric carrier may have a shape with six sides or other shape that creates a three-dimensional layout for the antenna structures. The antenna structures may have a tunable circuit that allows the antenna to be tuned. The tunable circuit may have first and second terminals coupled to one of the sides of the carrier. The metal structures may be configured to form an inverted-F antenna resonating element. Portions of the metal structures may form a first arm for an inverted-F antenna and portions of the metal structures may form a second arm for the inverted-F antenna. The antenna may operate in multiple communications bands. The tunable circuit may tune one band without significantly tuning other bands.
    Type: Application
    Filed: October 8, 2012
    Publication date: April 10, 2014
    Applicant: Apple Inc.
    Inventors: Salih Yarga, Qingxiang Li, Matthew A. Mow, Robert W. Schlub
  • Publication number: 20140086441
    Abstract: An electronic device may be provided with antenna structures. The antenna structures may be formed using a dielectric carrier structure such as a speaker enclosure, so that interior space within the electronic device that is occupied by a speaker can be used in forming an antenna. A speaker driver may be mounted in the speaker enclosure. Openings in the speaker enclosure may allow sound from the speaker driver to be emitted from the speaker enclosure. The antenna structures may have first and second loop antenna resonating elements. The first loop antenna resonating element may indirectly feed the second loop antenna resonating element. The second loop antenna resonating element may be a distributed loop element formed from a strip of metal with a width that loops around the speaker enclosure. Openings in the second loop antenna resonating element may be aligned with the speaker enclosure openings.
    Type: Application
    Filed: September 27, 2012
    Publication date: March 27, 2014
    Applicant: Apple, Inc.
    Inventors: Jiang Zhu, Qingxiang Li, Robert W. Schlub, Ruben Caballero
  • Publication number: 20140085161
    Abstract: An electronic device may be provided with antenna structures. The antenna structures may be formed using a dielectric carrier structure. The antenna structures may have first and second loop antenna resonating elements. The first loop antenna resonating element may indirectly feed the second loop antenna resonating element. The second loop antenna resonating element may be a distributed loop element formed from multiple antenna resonating element subloops. The second loop antenna resonating element may be formed from a strip of metal with a width that loops around the dielectric carrier. An opening in the metal may separate first and second subloop antenna resonating elements from each other in the second loop antenna resonating element. Openings in the metal may form metal segments that collectively form an inductance for the first subloop. Antenna currents may flow through metal traces on the carrier and portions of an electronic device housing wall.
    Type: Application
    Filed: September 27, 2012
    Publication date: March 27, 2014
    Applicant: Apple, Inc.
    Inventors: Jiang Zhu, Qingxiang Li, Robert W. Schlub, Ruben Caballero
  • Patent number: 8665160
    Abstract: A portable computing device is disclosed. The portable computing device can take many forms such as a laptop computer, a tablet computer, and so on. The portable computing device can include a single piece housing formed from a radio opaque material with a cover formed from a radio transparent material. To implement a wireless interface, an antenna stack-up can be provided that allows an antenna to be mounted to a bottom of the cover. Methods and apparatus are provided for improving wireless performance. For instance, in one embodiment, a metal housing can be thinned to improve antenna performance. As another example, a faraday cage can be formed around speaker drivers to improve antenna performance.
    Type: Grant
    Filed: January 31, 2011
    Date of Patent: March 4, 2014
    Assignee: Apple Inc.
    Inventors: Erik A. Uttermann, Jeremy C. Franklin, Stephen R. McClure, Sean S. Corbin, Qingxiang Li, Rodney A. Gomez Angulo
  • Publication number: 20140009344
    Abstract: An electronic device may be provided with a speaker box antenna for transmitting and receiving radio-frequency signals. A speaker box antenna may be formed from a hollow dielectric speaker box containing a speaker driver. An opening in the speaker box adjacent to the speaker driver may be aligned with a speaker port opening in a conductive electronic device housing structure. The speaker box may be surrounded by conductive structures that form a cavity for the antenna. The conductive structures may include parts of the conductive electronic device housing structure. The speaker box may have opposing upper and lower surfaces. Metal plates may form parts of the upper and lower surfaces and may be shorted together using a conductive layer such as a strip of metal tape. Frequencies of operation may be selected for the antenna that suppress undesired cavity modes and enhance antenna performance.
    Type: Application
    Filed: July 3, 2012
    Publication date: January 9, 2014
    Inventors: Jiang Zhu, Qingxiang Li, Rodney A. Gomez Angulo, Miroslav Samardzija, Gordon Coutts, Robert W. Schlub
  • Publication number: 20140009355
    Abstract: An electronic device may be provided with antenna structures. The antenna structures may include a plate antenna. The electronic device may have a conductive housing such as a metal housing with an opening. A dielectric antenna window may be formed within the opening. A dielectric support structure such as a flexible printed circuit may overlap the opening. A conductive trace on the dielectric support structure may form an antenna resonating element plate for the plate antenna. The plate may have a periphery that is separated from adjacent portions of the metal housing by a gap. The antenna resonating element plate may have a rectangular shape with a bend that lies along an edge of the conductive housing. The dielectric antenna window may have a bend that also lies along the edge of the conductive housing.
    Type: Application
    Filed: July 6, 2012
    Publication date: January 9, 2014
    Inventors: Miroslav Samardzija, Rodney A. Gomez Angulo, Qingxiang Li, Robert W. Schlub, Ruben Caballero
  • Publication number: 20130335275
    Abstract: An electronic device may be provided with a conductive housing. An antenna window structure may be formed in an opening in the housing. The antenna window structure may have an antenna support structure that is attached to the conductive housing and that supports antenna structures. An antenna window cap may be mounted in the opening and attached to the antenna support structure with liquid adhesive. Alignment structures may be provided in the antenna support structure. An antenna support plate with mating alignment structures may be used in attaching the antenna structures to the antenna support structures. Metal shielding structures may be used to provide electromagnetic shielding. A shielding wall may be formed from a sheet metal structure supported by a plastic support structure. A flexible metal shielding foil layer may be welded to the shielding wall using a sacrificial plate.
    Type: Application
    Filed: June 15, 2012
    Publication date: December 19, 2013
    Inventors: Emery A. Sanford, Qingxiang Li, Lijun Zhang, Anthony S. Montevirgen, Teodor Dabov, Erik G.P. de Jong, Wey-Jiun Lin
  • Publication number: 20130300618
    Abstract: An electronic device may have a conductive housing with an antenna window. A display cover layer may be mounted on the front face of the device. Antenna and proximity sensor structures may include a dielectric support structure with a notch. The antenna window may have a protruding portion that extends into the notch between the display cover layer and the antenna and proximity sensor structures. The antenna and proximity sensor structures may have an antenna feed that is coupled to a first conductive layer by a high pass circuit and capacitive proximity sensor circuitry that is coupled to the first conductive layer and a parallel second conductive layer by a low pass circuit. The first conductive layer may be formed from a metal coating on the support structure. The second conductive layer may be formed from patterned metal traces in a flexible printed circuit.
    Type: Application
    Filed: May 10, 2012
    Publication date: November 14, 2013
    Inventors: Salih Yarga, Nirali Shah, Qingxiang Li, Robert W. Schlub
  • Publication number: 20130293424
    Abstract: A display cover layer may be mounted in an electronic device housing using housing structures such as corner brackets. A slot antenna may be formed from a corner bracket opening, metal traces on a hollow plastic support structure, or other conductive structures. The slot antenna may have a main portion with opposing ends. An antenna feed may be located at one of the ends. The slot antenna may have a slot with one or more bends. The bends may provide the slot antenna with a C-shaped outline. A side branch slot may extend from the main portion of the slot at a location between the two bends. The presence of the side branch slot may enhance antenna bandwidth. A hollow enclosure may serve as an antenna support structure and as a speaker box enclosing a speaker driver. The antenna feed may be positioned so as to overlap the speaker driver.
    Type: Application
    Filed: May 2, 2012
    Publication date: November 7, 2013
    Inventors: Jiang Zhu, Qingxiang Li, Robert W. Schlub, Miroslav Samardzija, Gordon Coutts, Rodney A. Gomez Angulo, Yi Jiang, Boon W. Shiu, Salih Yarga, Emily B. McMilin, Ruben Caballero
  • Patent number: 8577289
    Abstract: An electronic device may have a housing in which an antenna is mounted. An antenna window may be mounted in the housing to allow radio-frequency signals to be transmitted from the antenna and to allow the antenna to receive radio-frequency signals. Near-field radiation limits may be satisfied by reducing transmit power when an external object is detected in the vicinity of the dielectric antenna window and the antenna. A capacitive proximity sensor may be used in detecting external objects in the vicinity of the antenna. The proximity sensor and the antenna may be formed using integral antenna resonating element and proximity sensor capacitor electrode structures. These structures may be formed from identical first and second patterned conductive layers on opposing sides of a dielectric substrate. A transceiver and proximity sensor may be coupled to the structures through respective high-pass and low-pass circuits.
    Type: Grant
    Filed: February 17, 2011
    Date of Patent: November 5, 2013
    Assignee: Apple Inc.
    Inventors: Robert W. Schlub, Yi Jiang, Qingxiang Li, Jiang Zhu, Ruben Caballero